1,318 research outputs found

    Soil stabilization using optimum quantity of calcium chloride with Class F fly ash

    Get PDF
    On-going research at Texas A&M University indicated that soil stabilization using calcium chloride filter cake along with Class F fly ash generates high strength. Previous studies were conducted with samples containing calcium chloride filter cake and both Class C fly ash and Class F fly ash. Mix design was fixed at 1.3% and 1.7% calcium chloride and 5% and 10% fly ash with crushed limestone base material. Throughout previous studies, recommended mix design was 1.7% calcium chloride filter cake with 10% Class F fly ash in crushed limestone base because Class F fly ash generates early high and durable strength. This research paper focused on the strength increase initiated by greater than 1.7% pure calcium chloride used with Class F fly ash in soil to verify the effectiveness and optimum ratio of calcium chloride and Class F fly ash in soil stabilization. Mix design was programmed at pure calcium chloride concentrations at 0% to 6% and Class F fly ash at 10 to 15%. Laboratory tests showed samples containing any calcium chloride concentration from 2% to 6% and Class F fly ash content from 10% to 15% obtained high early strength however, optimum moisture content, different mix design, and mineralogy deposit analysis are recommended to evaluate the role and the effectiveness of calcium chloride in soil stabilization because of the strength decreasing tendency of the samples containing calcium chloride after 56 days

    Prediction of the Chemical Composition and Fermentation Parameters of Fresh Coarse Italian Ryegrass Haylage Using Near Infrared Spectroscopy

    Get PDF
    Italian ryegrass (Lolium multiflorum) is an annual forage grass species which is widely cultivated in South Korea. It grows extensively in the southern part of the country and is an important component of winter forage for livestock. Each year, in Korea, over one million hectares of Italian ryegrass is converted to round bale haylage. Quality control is an important field in forage utilization research and marketing, and involves the estimation of forage nutrient content. Wet chemistry is the traditional method used to analyze the nutrient content of forage. However, this technique is often destructive, expensive, and time consuming, and it is not suitable for real-time feedstuff analysis. Near infrared spectroscopy (NIRS), on the other hand, is an alternative technique that has several major advantages over traditional methods. The analysis of silage nutrient content, using NIR, conventionally includes the drying and milling of samples. However, these processes can lead to reduction of volatile acids, which are important components of silage. NIRS can be affected by spectral regions, drying and grinding methods, particle size, packing density and the temperature of samples (Reeves and Blosser, 1991). In order to obtain accurate NIRS results, sample preparation, and the measurement conditions of the calibration set and predicted samples, need to match. The objectives of this study were to (1) assess the usefulness of NIRS in determining the nutritional composition and fermentative parameters of fresh coarse samples of Italian ryegrass haylage, (2) assess the predictive value of various NIRS calibration models, and (3) explore cost-effective and time saving methods for forage quality estimation, in field populations

    Atomic structure, energetics, and dynamics of topological solitons in Indium chains on Si(111) surfaces

    Full text link
    Based on scanning tunneling microscopy and first-principles theoretical studies, we characterize the precise atomic structure of a topological soliton in In chains grown on Si(111) surfaces. Variable-temperature measurements of the soliton population allow us to determine the soliton formation energy to be ~60 meV, smaller than one half of the band gap of ~200 meV. Once created, these solitons have very low mobility, even though the activation energy is only about 20 meV; the sluggish nature is attributed to the exceptionally low attempt frequency for soliton migration. We further demonstrate local electric field-enhanced soliton dynamics.Comment: 5 pages, 3 figure

    Prognostic impact of an integrative analysis of [18F]FDG PET parameters and infiltrating immune cell scores in lung adenocarcinoma

    Get PDF
    Background : High levels of 18F-fluorodeoxyglucose (18F-FDG) tumor uptake are associated with worse prognosis in patients with non-small cell lung cancer (NSCLC). Meanwhile, high levels of immune cell infiltration in primary tumor have been linked to better prognosis in NSCLC. We conducted this study for precisely stratified prognosis of the lung adenocarcinoma patients using the integration of 18F-FDG positron emission tomography (PET) parameters and infiltrating immune cell scores as assessed by a genomic analysis. Results : Using an RNA sequencing dataset, the patients were divided into three subtype groups. Additionally, 24 different immune cell scores and cytolytic scores (CYT) were obtained. In 18F-FDG PET scans, PET parameters of the primary tumors were obtained. An ANOVA test, a Chi-square test and a correlation analysis were also conducted. A Kaplan–Meier survival analysis with the log-rank test and multivariable Cox regression test was performed to evaluate prognostic values of the parameters. The terminal respiratory unit (TRU) group demonstrated lower 18F-FDG PET parameters, more females, and lower stages than the other groups. Meanwhile, the proximal inflammatory (PI) group showed a significantly higher CYT score compared to the other groups (P = .001). Also, CYT showed a positive correlation with tumor-to-liver maximum standardized uptake value ratio (TLR) in the PI group (P = .027). A high TLR (P = .01) score of 18F-FDG PET parameters and a high T follicular helper cell (TFH) score (P = .005) of immune cell scores were associated with prognosis with opposite tendencies. Furthermore, TLR and TFH were predictive of overall survival even after adjusting for clinicopathologic features and others (P = .024 and .047). Conclusions : A high TLR score was found to be associated with worse prognosis, while high CD8 T cell and TFH scores predicted better prognosis in lung adenocarcinoma. Furthermore, TLR and TFH can be used to predict prognosis independently in patients with lung adenocarcinoma.This study was supported by the National Research Foundation of Korea (NRF) (NRF-2019M2D2A1A01058210, NRF-2020R1C1C1009000, 2021M2E8A1039564) and Creative-Pioneering Researchers Program through Seoul National University (SNU)

    Radiosensitizing high-Z metal nanoparticles for enhanced radiotherapy of glioblastoma multiforme

    Get PDF
    Abstract Radiotherapy is an essential step during the treatment of glioblastoma multiforme (GBM), one of the most lethal malignancies. The survival in patients with GBM was improved by the current standard of care for GBM established in 2005 but has stagnated since then. Since GBM is a radioresistant malignancy and the most of GBM recurrences occur in the radiotherapy field, increasing the effectiveness of radiotherapy using high-Z metal nanoparticles (NPs) has recently attracted attention. This review summarizes the progress in radiotherapy approaches for the current treatment of GBM, the physical and biological mechanisms of radiosensitization through high-Z metal NPs, and the results of studies on radiosensitization in the in vitro and in vivo GBM models using high-Z metal NPs to date
    corecore