3 research outputs found

    Multifunctional Dendrimer Ligands for High-Efficiency, Solution-Processed Quantum Dot Light-Emitting Diodes

    No full text
    We present multifunctional dendrimer ligands that serve as the charge injection controlling layer as well as the adhesive layer at the interfaces between quantum dots (QDs) and the electron transport layer (ETL) in quantum dot light-emitting diodes (QLEDs). Specifically, we use primary amine-functionalized dendrimer ligands (<i>e</i>.<i>g</i>., a series of poly­(amidoamine) dendrimers (PADs, also referred to PAMAM)) that bind to the surface of QDs by replacing the native ligands (oleic acids) and also to the surface of ZnO ETL. PAD ligands control the electron injection rate from ZnO ETL into QDs by altering the electronic energy levels of the surface of ZnO ETL and thereby improve the charge balance within QDs in devices, leading to the enhancement of the device efficiency. As an ultimate achievement, the device efficiency (peak external quantum efficiency) improves by a factor of 3 by replacing the native ligands (3.86%) with PAD ligands (11.36%). In addition, multibranched dendrimer ligands keep the QD emissive layer intact during subsequent solution processing, enabling us to accomplish solution-processed QLEDs. The approach and results in the present study emphasize the importance of controlling the ligands of QDs to enhance QLED performance and also offer simple yet effective chemical mean toward all-solution-processed QLEDs

    Impact of Morphological Inhomogeneity on Excitonic States in Highly Mismatched Alloy ZnSe<sub>1–<i>X</i></sub>Te<sub><i>X</i></sub> Nanocrystals

    No full text
    ZnSe1–XTeX nanocrystals (NCs) are promising photon emitters with tunable emission across the violet to orange range and near-unity quantum yields. However, these NCs suffer from broad emission line widths and multiple exciton decay dynamics, which discourage their practicable use. Here, we explore the excitonic states in ZnSe1–XTeX NCs and their photophysical characteristics in relation to the morphological inhomogeneity of highly mismatched alloys. Ensemble and single-dot spectroscopic analysis of a series of ZnSe1–XTeX NC samples with varying Te ratios coupled with computational calculations shows that, due to the distinct electronegativity between Se and Te, nearest-neighbor Te pairs in ZnSe1–XTeX alloys create localized hole states spectrally distributed approximately 130 meV above the 1Sh level of homogeneous ZnSe1–XTeX NCs. This forms spatially separated excitons (delocalized electron and localized hole in trap), accounting for both inhomogeneous and homogeneous line width broadening with delayed recombination dynamics. Our results identify photophysical characteristics of excitonic states in NCs made of highly mismatched alloys and provide future research directions with potential implications for photonic applications

    Colloidal Spherical Quantum Wells with Near-Unity Photoluminescence Quantum Yield and Suppressed Blinking

    No full text
    Thick inorganic shells endow colloidal nanocrystals (NCs) with enhanced photochemical stability and suppression of photoluminescence intermittency (also known as blinking). However, the progress of using thick-shell heterostructure NCs in applications has been limited due to the low photoluminescence quantum yield (PL QY ≤ 60%) at room temperature. Here, we demonstrate thick-shell NCs with CdS/CdSe/CdS seed/spherical quantum well/shell (SQW) geometry that exhibit near-unity PL QY at room temperature and suppression of blinking. In SQW NCs, the lattice mismatch is diminished between the emissive CdSe layer and the surrounding CdS layers as a result of coherent strain, which suppresses the formation of misfit defects and consequently permits ∼100% PL QY for SQW NCs with a thick CdS shell (≥5 nm). High PL QY of thick-shell SQW NCs is preserved even in concentrated dispersion and in film under thermal stress, which makes them promising candidates for applications in solid-state lightings and luminescent solar concentrators
    corecore