1,015 research outputs found

    Simultaneous Total Occlusion of Multiple Distal Coronary Arteries in Acute Myocardial Infarction

    Get PDF
    Simultaneous multiple coronary artery thrombosis is a rare finding in ST segment elevation myocardial infarction (STEMI). We report a case of myocardial infarction with multiple ST segment elevation on the electrocardiography and total occlusions of the distal left anterior descending artery (dLAD), as well as of the second and third obtuse marginal artery on emergency coronary angiography. Thrombus aspiration was performed at dLAD and systemic glycoprotein IIb/IIIa inhibitor was used successfully. In patients with STEMI, multiple coronary thromboses are unusual and associated with patient fatality. However, assertive thrombus aspiration and antiplatelet therapy could be effective in STEMI patients with multiple distal coronary artery occlusions

    In Vitro inhibitory activity of Alpinia katsumadai extracts against influenza virus infection and hemagglutination

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Alpinia katsumadai </it>(AK) extracts and fractions were tested for <it>in vitro </it>antiviral activities against influenza virus type A, specially human A/PR/8/34 (H1N1) and avian A/Chicken/Korea/MS96/96 (H9N2), by means of time-of-addition experiments; pre-treatment, simultaneous treatment, and post treatment.</p> <p>Results</p> <p>In pre-treatment assay, the AK extracts and AK fractions did not show significant antiviral activity. During the simultaneous treatment assay, one AK extract and five AK fractions designated as AK-1 to AK-3, AK-5, AK-10, and AK-11 showed complete inhibition of virus infectivity against A/PR/8/34 (H1N1) and A/Chicken/Korea/MS96/96 (H9N2). The 50% effective inhibitory concentrations (EC<sub>50</sub>) of these one AK extracts and five AK fractions with exception of the AK-9 were from 0.8 ± 1.4 to 16.4 ± 4.5 <it>μ</it>g/mL against A/PR/8/34 (H1N1). The two AK extracts and three AK fractions had EC<sub>50 </sub>values ranging from <0.39 ± 0.4 to 2.3 ± 3.6 <it>μ</it>g/mL against A/Chicken/Korea/MS96/96 (H9N2). By the hemagglutination inhibition (HI) assay, the two AK extracts and five AK fractions completely inhibited viral adsorption onto chicken RBCs at less than 100 <it>μ</it>g/mL against both A/PR/8/34 (H1N1) and A/Chicken/Korea/MS96/96 (H9N2). Interestingly, only AK-3 was found with inhibition for both viral attachment and viral replication after showing extended antiviral activity during the post treatment assay and quantitative real-time PCR.</p> <p>Conclusions</p> <p>These results suggest that AK extracts and fractions had strong anti-influenza virus activity that can inhibit viral attachment and/or viral replication, and may be used as viral prophylaxis.</p

    Hepatoprotective and Antioxidative Activities of Cornus officinalis against Acetaminophen-Induced Hepatotoxicity in Mice

    Get PDF
    The fruit of Cornus officinalis Sieb. et Zucc. is commonly prescribed in Asian countries as a tonic formula. In this study, the hepatoprotective effect of ethanolic extracts of the fruit of C. officinalis (ECO) was investigated in a mouse model of acetaminophen- (APAP-) induced liver injury. Pretreatment of mice with ECO (100, 250, and 500 mg/kg for 7 days) significantly prevented the APAP (200 mg/kg) induced hepatic damage as indicated by the serum marker enzymes (AST, ALT, and LDH). Parallel to these changes, ECO treatment also prevented APAP-induced oxidative stress in the mice liver by inhibiting lipid peroxidation (MDA) and restoring the levels of antioxidant enzymes (SOD, CAT, and HO-1) and glutathione. Liver injury and collagen accumulation were assessed using histological studies by hematoxylin and eosin staining. Our results indicate that ECO can prevent hepatic injuries associated with APAP-induced hepatotoxicity by preventing or alleviating oxidative stress

    Inhibition of histone deacetylase 6 suppresses inflammatory responses and invasiveness of fibroblast-like-synoviocytes in inflammatory arthritis

    Get PDF
    Background To investigate the effects of inhibiting histone deacetylase (HDAC) 6 on inflammatory responses and tissue-destructive functions of fibroblast-like synoviocytes (FLS) in rheumatoid arthritis (RA). Methods FLS from RA patients were activated with interleukin (IL)-1β in the presence of increasing concentrations of M808, a novel specific HDAC6 inhibitor. Production of ILs, chemokines, and metalloproteinases (MMPs) was measured in ELISAs. Acetylation of tubulin and expression of ICAM-1 and VCAM-1 were assessed by Western blotting. Wound healing and adhesion assays were performed. Cytoskeletal organization was visualized by immunofluorescence. Finally, the impact of HDAC6 inhibition on the severity of arthritis and joint histology was examined in a murine model of adjuvant-induced arthritis (AIA). Results HDAC6 was selectively inhibited by M808. The HDAC6 inhibitor suppressed the production of MMP-1, MMP-3, IL-6, CCL2, CXCL8, and CXCL10 by RA-FLS in response to IL-1β. Increased acetylation of tubulin was associated with decreased migration of RA-FLS. Inhibiting HDAC6 induced cytoskeletal reorganization in RA-FLS by suppressing the formation of invadopodia following activation with IL-1β. In addition, M808 tended to decrease the expression of ICAM-1 and VCAM-1. In the AIA arthritis model, M808 improved the clinical arthritis score in a dose-dependent manner. Also, HDAC6 inhibition was associated with less severe synovial inflammation and joint destruction. Conclusion Inhibiting HDAC6 dampens the inflammatory and destructive activity of RA-FLS and reduces the severity of arthritis. Thus, targeting HDAC6 has therapeutic potential.This study was supported by a grant from the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number:HI14C1277); the Ministry of Science, ICT and Future Planning (NRF2020M3E5E2037430, 2019M3A9A8065574); and the Chong Kun Dang Pharmaceutical Corp. TP was supported by the DFG (FOR2722)
    corecore