8,947 research outputs found
Fractal Metamaterial Absorber with Three-Order Oblique Cross Dipole Slot Structure and its Application for In-band RCS Reduction of Array Antennas
To miniaturize the perfect metamaterial absorber, a fractal three-order oblique cross dipole slot structure is proposed and investigated in this paper. The fractal perfect metamaterial absorber (FPMA) consists of two metallic layers separated by a lossy dielectric substrate. The top layer etched a three-order oblique fractal-shaped cross dipole slot set in a square patch and the bottom one is a solid metal. The parametric study is performed for providing practical design guidelines. A prototype with a thickness of 0.0106λ (λ is the wavelength at 3.18 GHz) of the FPMA was designed, fabricated, measured, and is loaded on a 1×10 guidewave slot array antennas to reduce the in-band radar cross section (RCS) based on their surface current distribution. Experiments are carried out to verify the simulation results, and the experimental results show that the absorption at normal incidence is above 90% from 3.17 to 3.22GHz, the size for the absorber is 0.1λ×0.1λ, the three-order FPMA is miniaturized 60% compared with the zero-order ones, and the array antennas significantly obtain the RCS reduction without the radiation deterioration
Physical properties of CO-dark molecular gas traced by C
Neither HI nor CO emission can reveal a significant quantity of so-called
dark gas in the interstellar medium (ISM). It is considered that CO-dark
molecular gas (DMG), the molecular gas with no or weak CO emission, dominates
dark gas. We identified 36 DMG clouds with C emission (data from Galactic
Observations of Terahertz C+ (GOT C+) project) and HINSA features. Based on
uncertainty analysis, optical depth of HI of 1 is a reasonable
value for most clouds. With the assumption of , these clouds
were characterized by excitation temperatures in a range of 20 K to 92 K with a
median value of 55 K and volume densities in the range of
cm to cm with a median value of
cm. The fraction of DMG column density in the cloud ()
decreases with increasing excitation temperature following an empirical
relation +1.0. The relation
between and total hydrogen column density is given by
=. The values of in the
clouds of low extinction group ( mag) are consistent with the
results of the time-dependent, chemical evolutionary model at the age of ~ 10
Myr. Our empirical relation cannot be explained by the chemical evolutionary
model for clouds in the high extinction group ( mag). Compared to
clouds in the low extinction group ( mag), clouds in the high
extinction group ( mag) have comparable volume densities but
excitation temperatures that are 1.5 times lower. Moreover, CO abundances in
clouds of the high extinction group ( mag) are
times smaller than the canonical value in the Milky Way. #[Full version of
abstract is shown in the text.]#Comment: Accepted for publishing in Astronomy & Astrophysics. 13 pages, 8
figure
- …