241 research outputs found

    Invariance of Charge of Laughlin Quasiparticles

    Full text link
    A Quantum Antidot electrometer has been used in the first direct observation of the fractionally quantized electric charge. In this paper we report experiments performed on the integer i = 1, 2 and fractional f = 1/3 quantum Hall plateaus extending over a filling factor range of at least 27%. We find the charge of the Laughlin quasiparticles to be invariantly e/3, with standard deviation of 1.2% and absolute accuracy of 4%, independent of filling, tunneling current, and temperature.Comment: 4 pages, 5 fig

    Quantum phase transition of condensed bosons in optical lattices

    Full text link
    In this paper we study the superfluid-Mott-insulator phase transition of ultracold dilute gas of bosonic atoms in an optical lattice by means of Green function method and Bogliubov transformation as well. The superfluid- Mott-insulator phase transition condition is determined by the energy-band structure with an obvious interpretation of the transition mechanism. Moreover the superfluid phase is explained explicitly from the energy spectrum derived in terms of Bogliubov approach.Comment: 13 pages, 1 figure

    A comparison of twin birthweight data from Australia, the Netherlands, the United States, Japan and South Korea: are genetic and environmental variations in birthweight similar in Caucasians and East Asians?

    Get PDF
    Birthweight has implications for physical and mental health in later life. Using data from Caucasian twins collected in Australia, the Netherlands and the United States, and from East Asian twins collected in Japan and South Korea, we compared the total phenotypic, genetic and environmental variances of birthweight between Caucasians and East Asians. Model-fitting analyses yielded four major findings. First, for both males and females, the total phenotypic variances of birthweight were about 45% larger in Caucasians than in East Asians. The larger phenotypic variances were mainly attributable to a greater shared environmental variance of birthweight in Caucasians (ranging from 62% to 67% of variance) than Asians (48% to 53%). Second, the genetic variance of birthweight was equal in Caucasians and East Asians for both males and females, explaining a maximum of 17% of variance. Third, small variations in total phenotypic variances of birthweight within Caucasians and within East Asians were mainly due to differences in nonshared environmental variances. We speculate that maternal effects (both genetic and environmental) explain the large shared environmental variance in birthweight and may account for the differences in phenotypic variance in birthweight between Caucasians and East Asians. Recent molecular findings and specific environmental factors that are subsumed by maternal effects are discussed

    Topological insulator BSTS as a broadband switchable metamaterial

    No full text
    The development of metamaterials into a viable platform for nanophotonic applications, data processing circuits, sensors, etc. requires identification of new plasmonic materials to overcome the limitations of noble metals, in particular their high losses. Here we describe a class of topological insulator materials which support broadband plasmonic response and possess extremely appealing photonic properties ranging from mid-IR to UV. Bi1.5Sb0.5Te1.8Se1.2 (BSTS) is a bulk insulator with robust conducting surface states protected by time-reversal symmetry, due to the strong spin-orbit coupling. BSTS single crystals were synthesized by melting high-purity Bi, Sb, Te and Se powders at 950°C in an evacuated quartz tube. The temperature was then gradually decreased to room temperature over a span of three weeks. The resulting crystals were then cleaved along the (100) family of planes to a thickness of ~0.5 mm. BSTS dielectric constants were derived by ellipsometric measurements and appear to be in excellent agreement with first principle DFT calculations. Unlike common direct or indirect bandgap semiconductors, the anomalous dispersion region falls in the visible part of the spectrum, leading to negative values of the permittivity. This behavior of the optical response is attributed to a combination of bulk interband transitions and surface contribution of the topologically protected states. To prove metallic behavior of BSTS, we fabricated metamaterials and gratings on crystal flakes and registered strong plasmonic response from UV to NIR. The coexistence of plasmonic response of the topological surface with dielectric properties of the semiconducting bulk enables ultrafast (t>100 fs) and broadband (to mid-IR) photo-modulation of the optical response. These findings show the potential of topological insulators as a platform for high-frequency switchable plasmonic metamaterials

    Electrical stimulation-induced cell clustering in cultured neural networks

    Get PDF
    Support: International Collaboration Program, NBS-ERC /KOSEF (Korea Science and Engineering Foundation); NIH NS-044287; Nanobiotechnology Centre (NBTC), an STC program of the National Science Foundation under Agreement Number ECS-9876771

    CP violation in Bd,sl+lB_{d,s} \to l^+l^- in the model III 2HDM

    Full text link
    We have calculated the Wilson coefficients C10,CQiC_{10}, C_{Q_i} (i=1,2) in the MSˉ\bar{MS} renormalization scheme in the model III 2HDM. Using the obtained Wilson coefficients, we have analyzed the CP violation in decays Bq0l+lB^0_q\to l^+l^- (q=d,s) in the model. The CP asymmetry, ACPA_{CP}, depends on the parameters of models and ACPA_{CP} in Bdl+lB_d\to l^+l^- can be as large as 40% and 35% for l=τl=\tau and l=μl=\mu respectively. It can reach 4% for Bs0B^0_s decays. Because in SM CP violation is smaller than or equal to O(10310^{-3}) which is unobservably small, an observation of CP asymmetry in the decays Bq0l+l(q=d,s)B^0_q \to l^+l^- (q=d,s) would unambiguously signal the existence of new physics.Comment: revtex4, 16 pages, 7 figure

    Magnetic fields in supernova remnants and pulsar-wind nebulae

    Full text link
    We review the observations of supernova remnants (SNRs) and pulsar-wind nebulae (PWNe) that give information on the strength and orientation of magnetic fields. Radio polarimetry gives the degree of order of magnetic fields, and the orientation of the ordered component. Many young shell supernova remnants show evidence for synchrotron X-ray emission. The spatial analysis of this emission suggests that magnetic fields are amplified by one to two orders of magnitude in strong shocks. Detection of several remnants in TeV gamma rays implies a lower limit on the magnetic-field strength (or a measurement, if the emission process is inverse-Compton upscattering of cosmic microwave background photons). Upper limits to GeV emission similarly provide lower limits on magnetic-field strengths. In the historical shell remnants, lower limits on B range from 25 to 1000 microGauss. Two remnants show variability of synchrotron X-ray emission with a timescale of years. If this timescale is the electron-acceleration or radiative loss timescale, magnetic fields of order 1 mG are also implied. In pulsar-wind nebulae, equipartition arguments and dynamical modeling can be used to infer magnetic-field strengths anywhere from about 5 microGauss to 1 mG. Polarized fractions are considerably higher than in SNRs, ranging to 50 or 60% in some cases; magnetic-field geometries often suggest a toroidal structure around the pulsar, but this is not universal. Viewing-angle effects undoubtedly play a role. MHD models of radio emission in shell SNRs show that different orientations of upstream magnetic field, and different assumptions about electron acceleration, predict different radio morphology. In the remnant of SN 1006, such comparisons imply a magnetic-field orientation connecting the bright limbs, with a non-negligible gradient of its strength across the remnant.Comment: 20 pages, 24 figures; to be published in SpSciRev. Minor wording change in Abstrac

    Thermal leptogenesis in a model with mass varying neutrinos

    Full text link
    In this paper we consider the possibility of neutrino mass varying during the evolution of the Universe and study its implications on leptogenesis. Specifically, we take the minimal seesaw model of neutrino masses and introduce a coupling between the right-handed neutrinos and the dark energy scalar field, the Quintessence. In our model, the right-handed neutrino masses change as the Quintessence scalar evolves. We then examine in detail the parameter space of this model allowed by the observed baryon number asymmetry. Our results show that it is possible to lower the reheating temperature in this scenario in comparison with the case that the neutrino masses are unchanged, which helps solve the gravitino problem. Furthermore, a degenerate neutrino mass patten with mim_i larger than the upper limit given in the minimal leptogenesis scenario is permitted.Comment: 18 pages, 7 figures, version to appear in PR

    Identification and Functional Characterization of G6PC2 Coding Variants Influencing Glycemic Traits Define an Effector Transcript at the G6PC2-ABCB11 Locus

    Get PDF
    Genome wide association studies (GWAS) for fasting glucose (FG) and insulin (FI) have identified common variant signals which explain 4.8% and 1.2% of trait variance, respectively. It is hypothesized that low-frequency and rare variants could contribute substantially to unexplained genetic variance. To test this, we analyzed exome-array data from up to 33,231 non-diabetic individuals of European ancestry. We found exome-wide significant (P<5×10-7) evidence for two loci not previously highlighted by common variant GWAS: GLP1R (p.Ala316Thr, minor allele frequency (MAF)=1.5%) influencing FG levels, and URB2 (p.Glu594Val, MAF = 0.1%) influencing FI levels. Coding variant associations can highlight potential effector genes at (non-coding) GWAS signals. At the G6PC2/ABCB11 locus, we identified multiple coding variants in G6PC2 (p.Val219Leu, p.His177Tyr, and p.Tyr207Ser) influencing FG levels, conditionally independent of each other and the non-coding GWAS signal. In vitro assays demonstrate that these associated coding alleles result in reduced protein abundance via proteasomal degradation, establishing G6PC2 as an effector gene at this locus. Reconciliation of single-variant associations and functional effects was only possible when haplotype phase was considered. In contrast to earlier reports suggesting that, paradoxically, glucose-raising alleles at this locus are protective against type 2 diabetes (T2D), the p.Val219Leu G6PC2 variant displayed a modest but directionally consistent association with T2D risk. Coding variant associations for glycemic traits in GWAS signals highlight PCSK1, RREB1, and ZHX3 as likely effector transcripts. These coding variant association signals do not have a major impact on the trait variance explained, but they do provide valuable biological insights
    corecore