70 research outputs found
Extreme Variability in a Broad Absorption Line Quasar
CRTS J084133.15+200525.8 is an optically bright quasar at z=2.345 that has
shown extreme spectral variability over the past decade. Photometrically, the
source had a visual magnitude of V~17.3 between 2002 and 2008. Then, over the
following five years, the source slowly brightened by approximately one
magnitude, to V~16.2. Only ~1 in 10,000 quasars show such extreme variability,
as quantified by the extreme parameters derived for this quasar assuming a
damped random walk model. A combination of archival and newly acquired spectra
reveal the source to be an iron low-ionization broad absorption line (FeLoBAL)
quasar with extreme changes in its absorption spectrum. Some absorption
features completely disappear over the 9 years of optical spectra, while other
features remain essentially unchanged. We report the first definitive redshift
for this source, based on the detection of broad H-alpha in a Keck/MOSFIRE
spectrum. Absorption systems separated by several 1000 km/s in velocity show
coordinated weakening in the depths of their troughs as the continuum flux
increases. We interpret the broad absorption line variability to be due to
changes in photoionization, rather than due to motion of material along our
line of sight. This source highlights one sort of rare transition object that
astronomy will now be finding through dedicated time-domain surveys.Comment: 6 pages, 4 figures; accepted for publication in Ap
Eddington-Limited Accretion in z~2 WISE-selected Hot, Dust-Obscured Galaxies
Hot, Dust-Obscured Galaxies, or "Hot DOGs", are a rare, dusty, hyperluminous
galaxy population discovered by the WISE mission. Predominantly at redshifts
2-3, they include the most luminous known galaxies in the universe. Their high
luminosities likely come from accretion onto highly obscured super massive
black holes (SMBHs). We have conducted a pilot survey to measure the SMBH
masses of five z~2 Hot DOGs via broad H_alpha emission lines, using
Keck/MOSFIRE and Gemini/FLAMINGOS-2. We detect broad H_alpha emission in all
five Hot DOGs. We find substantial corresponding SMBH masses for these Hot DOGs
(~ 10^{9} M_sun), and their derived Eddington ratios are close to unity. These
z~2 Hot DOGs are the most luminous AGNs at given BH masses, suggesting they are
accreting at the maximum rates for their BHs. A similar property is found for
known z~6 quasars. Our results are consistent with scenarios in which Hot DOGs
represent a transitional, high-accretion phase between obscured and unobscured
quasars. Hot DOGs may mark a special evolutionary stage before the red quasar
and optical quasar phases, and they may be present at other cosmic epochs.Comment: 15 pages, 9 figures. Accepted by Ap
A new physical interpretation of optical and infrared variability in quasars
Changing-look quasars are a recently identified class of active galaxies in
which the strong UV continuum and/or broad optical hydrogen emission lines
associated with unobscured quasars either appear or disappear on timescales of
months to years. The physical processes responsible for this behaviour are
still debated, but changes in the black hole accretion rate or accretion disk
structure appear more likely than changes in obscuration. Here we report on
four epochs of spectroscopy of SDSS J110057.70-005304.5, a quasar at a redshift
of whose UV continuum and broad hydrogen emission lines have faded,
and then returned over the past 20 years. The change in this quasar
was initially identified in the infrared, and an archival spectrum from 2010
shows an intermediate phase of the transition during which the flux below
rest-frame 3400\AA\ has decreased by close to an order of magnitude.
This combination is unique compared to previously published examples of
changing-look quasars, and is best explained by dramatic changes in the
innermost regions of the accretion disk. The optical continuum has been rising
since mid-2016, leading to a prediction of a rise in hydrogen emission line
flux in the next year. Increases in the infrared flux are beginning to follow,
delayed by a 3 year observed timescale. If our model is confirmed, the
physics of changing-look quasars are governed by processes at the innermost
stable circular orbit (ISCO) around the black hole, and the structure of the
innermost disk. The easily identifiable and monitored changing-look quasars
would then provide a new probe and laboratory of the nuclear central engine.Comment: 13 pages, 4 figures, 3 tables. Published in MNRAS. All code and data
links on GitHub, https://github.com/d80b2t/WISE_L
Infrared Time Lags for the Periodic Quasar PG 1302-102
The optical light curve of the quasar PG 1302-102 at z = 0.278 shows a strong, smooth 5.2 year periodic signal, detectable over a period of ~20 years. Although the interpretation of this phenomenon is still uncertain, the most plausible mechanisms involve a binary system of two supermassive black holes with a subparsec separation. At this close separation, the nuclear black holes in PG 1302-102 will likely merge within ~ 10^5 years due to gravitational wave emission alone. Here, we report the rest-frame near-infrared time lags for PG 1302-102. Compiling data from WISE and Akari, we confirm that the periodic behavior reported in the optical light curve from Graham et al. is reproduced at infrared wavelengths, with best-fit observed-frame 3.4 and 4.6 µm time lags of (2219 ± 153, 2408 ± 148) days for a near face-on orientation of the torus, or (4103 ± 153, 4292 ± 148) days for an inclined system with relativistic Doppler boosting in effect. The periodicity in the infrared light curves and the light-travel time of the accretion disk photons to reach the dust glowing regions support that a source within the accretion disk is responsible for the optical variability of PG 1302-102, echoed at the farther out dusty regions. The implied distance of this dusty, assumed toroidal region is ~1.5 pc for a near face-on geometry or ~1.1 pc for the relativistic Doppler-boosted case
Constraints on the variation of the fine-structure constant at 3<z<10 with JWST emission-line galaxies
We present constraints on the spacetime variation of the fine-structure
constant at redshifts using JWST emission-line galaxies. The
galaxy sample consists of 572 high-quality spectra with strong and narrow [O
III] 4959,5007 doublet emission lines from 522 galaxies,
including 267 spectra at . The [O III] doublet lines are arguably the best
emission lines to probe the variation in . We divide our sample into 5
subsamples based on redshift and calculate the relative variation
for the individual subsamples. The calculated
values are consistent with zero within at all
redshifts, suggesting no time variation in above a level of () in the past 13.2 billion years. When the whole
sample is combined, the constraint is improved to be . We further test the spatial variation in
using four subsamples of galaxies in four different directions on the sky. The
measured values are consistent with zero at a
level of . While the constraints in this work are not as stringent
as those from lower-redshift quasar absorption lines in previous studies, this
work uses an independent tracer and provides the first constraints on
at the highest redshifts. Our analyses also indicate that
the relative wavelength calibration of the JWST spectra is robust. With the
growing number of emission-line galaxies from JWST, we expect to achieve
stronger constraints in the future.Comment: 9 pages, 6 figures, submitted to Ap
Fast Outflows in Hot Dust-obscured Galaxies Detected with Keck/NIRES
We present rest-frame optical spectroscopic observations of 24 Hot Dust-Obscured Galaxies (Hot DOGs) at redshifts 1.7–4.6 with KECK/NIRES. Our targets are selected, based on their extreme red colors, to be the highest-luminosity sources from the WISE infrared survey. In 20 sources with well-detected emission, we fit the key [O iii], Hβ, Hα, [N ii], and [S ii] diagnostic lines to constrain physical conditions. Of the 17 targets with a clear detection of the [O iii]λ5007 Å emission line, 15 display broad blueshifted and asymmetric line profiles, with widths ranging from 1000 to 8000 km s⁻¹ and blueshifts up to 3000 km s⁻¹. These kinematics provide strong evidence for the presence of massive ionized outflows of up to 8000 M_ ⊙ yr⁻¹, with a median of 150 M_ ⊙ yr⁻¹. As many as eight sources show optical emission line ratios consistent with vigorous star formation. Balmer-line star formation rates, uncorrected for reddening, range from 30 to 1300 M_ ⊙ yr⁻¹, with a median of 50 M_ ⊙ yr⁻¹. Estimates of the SFR from Spectral Energy Distribution fitting of mid- and far-infrared photometry suggest significantly higher values. We estimate the central black hole masses to be of order 10⁸⁻¹⁰ M_ ⊙, assuming the present-day M_(BH)-σ_★ relation. The bolometric luminosities and the estimated masses of the central black holes of these galaxies suggest that many of the active galactic nucleus-dominated Hot DOGs are accreting at or above their Eddington limit. The combination of ongoing star formation, massive outflows, and high Eddington ratios suggest Hot DOGs are a transitional phase in galaxy evolution
- …
