16 research outputs found

    Molecular Epidemiology of Foot-and-Mouth Disease Virus in the Context of Transboundary Animal Movement in the Far North Region of Cameroon

    Get PDF
    Transboundary movement of animals is an important mechanism for foot-and-mouth disease virus (FMDV) spread in endemic regions, such as Cameroon. Several transboundary animal trade routes cross the Far North Region of Cameroon, and cattle moved on foot along these routes often come in contact with native (sedentary and transhumant) herds. The purpose of this study was to investigate the role of transboundary trade cattle in the epidemiology of FMDV in the Far North Region of Cameroon. A total of 582 oropharyngeal fluid (OPF) samples were collected from asymptomatic transboundary trade cattle at official border check points and 57 vesicle epithelial tissues were collected from clinically affected native cattle in the Far North Region of Cameroon during 2010–2014. Viral protein 1 (VP1) coding sequences were obtained from 6 OPF samples from transboundary cattle (4 serotype O, 2 serotype SAT2) and 19 epithelial tissue samples from native cattle (7 serotype O, 3 serotype SAT2, 9 serotype A). FMDV serotype O viruses belonged to two topotypes (East Africa-3 and West Africa), and phylogenetic analyses suggested a pattern of continuous transmission in the region. Serotype SAT2 viruses belonged to a single topotype (VII), and phylogenetic analysis suggested a pattern of repeated introductions of different SAT2 lineages in the region. Serotype A viruses belonged to topotype AFRICA/G-IV, and the pattern of transmission was unclear. Spearman rank correlation analysis of VP1 coding sequences obtained in this study from transboundary and native cattle showed a positive correlation between genetic distance and time for serotype O (ρ = 0.71, p = 0.003) and between genetic distance and geographic distance for serotype SAT2 (ρ = 0.54, p = 0.1). These data suggest that transboundary trade cattle participate in the transmission of FMDV in the Far North Region of Cameroon, however the dynamics and direction of transmission could not be determined in this study. Results of this study contribute to the understanding of transboundary FMDV epidemiology in Central Africa and will help to inform control programs in Cameroon and in the region

    Disentangling the role of Africa in the global spread of H5 highly pathogenic avian influenza

    Get PDF
    The role of Africa in the dynamics of the global spread of a zoonotic and economicallyimportant virus, such as the highly pathogenic avian influenza (HPAI) H5Nx of the Gs/GD lineage, remains unexplored. Here we characterise the spatiotemporal patterns of virus diffusion during three HPAI H5Nx intercontinental epidemic waves and demonstrate that Africa mainly acted as an ecological sink of the HPAI H5Nx viruses. A joint analysis of host dynamics and continuous spatial diffusion indicates that poultry trade as well as wild bird migrations have contributed to the virus spreading into Africa, with West Africa acting as a crucial hotspot for virus introduction and dissemination into the continent. We demonstrate varying paths of avian influenza incursions into Africa as well as virus spread within Africa over time, which reveal that virus expansion is a complex phenomenon, shaped by an intricate interplay between avian host ecology, virus characteristics and environmental variables.USAID under the OSRO/GLO/501/USA and OSRO/GLO/507/USA projects and by European Union’s Horizon 2020 research and innovation programme under grant agreement No 727922 (DELTAFLU). The European Research Council under the European Unionʼs Horizon 2020 research and innovation programme (grant agreement no. 725422-ReservoirDOCS). P.L. acknowledges support by the Research Foundation – Flanders FWO, G066215N, G0D5117N and G0B9317N). B.V. is a postdoctoral research fellow supported by the FWO.http://www.nature.com/naturecommunicationsam2020Microbiology and Plant Patholog

    Serotype-Specific Transmission and Waning Immunity of Endemic Foot-and-Mouth Disease Virus in Cameroon

    No full text
    <div><p>Foot-and-mouth disease virus (FMDV) causes morbidity and mortality in a range of animals and threatens local economies by acting as a barrier to international trade. The outbreak in the United Kingdom in 2001 that cost billions to control highlighted the risk that the pathogen poses to agriculture. In response, several mathematical models have been developed to parameterize and predict both transmission dynamics and optimal disease control. However, a lack of understanding of the multi-strain etiology prevents characterization of multi-strain dynamics. Here, we use data from FMDV serology in an endemic setting to probe strain-specific transmission and immunodynamics. Five serotypes of FMDV affect cattle in the Far North Region of Cameroon. We fit both catalytic and reverse catalytic models to serological data to estimate the force of infection and the rate of waning immunity, and to detect periods of sustained transmission. For serotypes SAT2, SAT3, and type A, a model assuming life-long immunity fit better. For serotypes SAT1 and type O, the better-fit model suggests that immunity may wane over time. Our analysis further indicates that type O has the greatest force of infection and the longest duration of immunity. Estimates for the force of infection were time-varying and indicated that serotypes SAT1 and O displayed endemic dynamics, serotype A displayed epidemic dynamics, and SAT2 and SAT3 did not sustain local chains of transmission. Since these results were obtained from the same population at the same time, they highlight important differences in transmission specific to each serotype. They also show that immunity wanes at rates specific to each serotype, which influences patterns of local persistence. Overall, this work shows that viral serotypes can differ significantly in their epidemiological and immunological characteristics. Patterns and processes that drive transmission in endemic settings must consider complex viral dynamics for accurate representation and interpretation.</p></div

    Yearly force of infection by serotype.

    No full text
    <p>Estimates derived by model fitting for the time-varying force of infection (FOI) for SAT1, SAT2, SAT2, type O, and type A inferred for the 16-year period preceding data collection represented by a solid line. The dotted line represents the epidemic threshold <i>R</i><sub>0</sub> = 1; the shaded areas represent estimated FOI that correspond to <i>R</i><sub>0</sub> > 1 and therefore, sustained chains of transmission within the study population. Note that the scale of the y-axis varies across panels.</p

    Age distribution of sampled cattle.

    No full text
    <p>Four hundred sixty nine cattle, ranging in age from one year old to sixteen years old, were sampled for serotype-specific FMDV antibodies.</p

    Model selection and parameterization results for five FMDV serotypes.

    No full text
    <p>Best-fit model results using the catalytic model (for SAT2, SAT3, and type A) or reverse catalytic mode (for SAT1 and type O) with values for the duration of immunity and serotype-specific time-varying forces of infection estimated from serology data.</p
    corecore