4 research outputs found

    A highly-verified biometric recognition system using an ultra-speed specifically-developed finger vein sensor

    Get PDF
    Currently, Biometrics has been utilized the top five modality of face, voice, IRIs, fingerprint, and palm to identify individuals. Comparatively, these Biometrics systems need complex computation to be slow and an easy target to hack. Alternatively, this work proposes a novel biometrics system of highly secured recognition with low computation time using specifically designed biometrics sensor. Consequently, finger vein recognition has been developed. Although, this recognition requires high point of safety measures comes with its individual experiments. The most prominent one being the vein pattern is very difficult to extract because finger vein images are constantly low in quality, seriously hampering the feature extraction and classification stages. Sophisticated algorithms need to be designed with the conventional hardware for capturing finger-vein images is modified by using red Surface Mounted Diode (SMD) leds. For capturing images, Canon 750D camera is used with micro lens. The integrated micro lens gives better quality images, and with some adjustments it can also capture finger print. Results have been comparatively improvement for SDUMLA-HMT database and extensively evaluated with k-nearest neighbors (KNN) algorithm. The (KNN) algorithm is a simple, easy-to-implement supervised machine learning algorithm that can be used to solve both classification and regression problems. KNN calculations are highly accurate in test data. Using stratified 6- fold analysis on all fingers of all hands in collected database, a maximum accuracy of 100% was achieved with an EER of 0% when select right hand and middle finger, based on the analysis of the 106 persons present in the data set. Many approaches have been used to optimize vein image quality. The proposed system has optimum results as compared to existing related works. The work novelty is due to the hardware design of the sensor within the finger-vein recognition system to obtain, simultaneously, finger vein and finger print at low cost, unlimited users for one device and open source

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Retracted: Distance estimation by computer vision and shortest path planning using single camera

    No full text
    This article was withdrawn and retracted by the Journal of Fundamental and Applied Sciences and has been removed from AJOL at the request of the journal Editor in Chief and the organisers of the conference at which the articles were presented (www.iccmit.net). Please address any queries to [email protected]

    SARS-CoV-2 vaccination modelling for safe surgery to save lives: data from an international prospective cohort study

    No full text
    Background: Preoperative SARS-CoV-2 vaccination could support safer elective surgery. Vaccine numbers are limited so this study aimed to inform their prioritization by modelling. Methods: The primary outcome was the number needed to vaccinate (NNV) to prevent one COVID-19-related death in 1 year. NNVs were based on postoperative SARS-CoV-2 rates and mortality in an international cohort study (surgical patients), and community SARS-CoV-2 incidence and case fatality data (general population). NNV estimates were stratified by age (18-49, 50-69, 70 or more years) and type of surgery. Best- and worst-case scenarios were used to describe uncertainty. Results: NNVs were more favourable in surgical patients than the general population. The most favourable NNVs were in patients aged 70 years or more needing cancer surgery (351; best case 196, worst case 816) or non-cancer surgery (733; best case 407, worst case 1664). Both exceeded the NNV in the general population (1840; best case 1196, worst case 3066). NNVs for surgical patients remained favourable at a range of SARS-CoV-2 incidence rates in sensitivity analysis modelling. Globally, prioritizing preoperative vaccination of patients needing elective surgery ahead of the general population could prevent an additional 58 687 (best case 115 007, worst case 20 177) COVID-19-related deaths in 1 year. Conclusion: As global roll out of SARS-CoV-2 vaccination proceeds, patients needing elective surgery should be prioritized ahead of the general population
    corecore