234 research outputs found

    Distant Entanglement of Macroscopic Gas Samples

    Full text link
    One of the main ingredients in most quantum information protocols is a reliable source of two entangled systems. Such systems have been generated experimentally several years ago for light but has only in the past few years been demonstrated for atomic systems. None of these approaches however involve two atomic systems situated in separate environments. This is necessary for the creation of entanglement over arbitrary distances which is required for many quantum information protocols such as atomic teleportation. We present an experimental realization of such distant entanglement based on an adaptation of the entanglement of macroscopic gas samples containing about 10^11 cesium atoms shown previously by our group. The entanglement is generated via the off-resonant Kerr interaction between the atomic samples and a pulse of light. The achieved entanglement distance is 0.35m but can be scaled arbitrarily. The feasibility of an implementation of various quantum information protocols using macroscopic samples of atoms has therefore been greatly increased. We also present a theoretical modeling in terms of canonical position and momentum operators X and P describing the entanglement generation and verification in presence of decoherence mechanisms.Comment: 20 pages book-style, 3 figure

    Entanglement of bosonic modes in symmetric graphs

    Full text link
    The ground and thermal states of a quadratic hamiltonian representing the interaction of bosonic modes or particles are always Gaussian states. We investigate the entanglement properties of these states for the case where the interactions are represented by harmonic forces acting along the edges of symmetric graphs, i.e. 1, 2, and 3 dimensional rectangular lattices, mean field clusters and platonic solids. We determine the Entanglement of Formation (EoF) as a function of the interaction strength, calculate the maximum EoF in each case and compare these values with the bounds found in \cite{wolf} which are valid for any quadratic hamiltonian.Comment: 15 pages, 8 figures, 3 tables, Latex, Accepted for publication in Physical Review

    Evolution of twin-beam in active optical media

    Get PDF
    We study the evolution of twin-beam propagating inside active media that may be used to establish a continuous variable entangled channel between two distant users. In particular, we analyze how entanglement is degraded during propagation, and determine a threshold value for the interaction time, above which the state become separable, and thus useless for entanglement based manipulations. We explicitly calculate the fidelity for coherent state teleportation and show that it is larger than one half for the whole range of parameters preserving entanglemenent.Comment: several misprints correcte

    Quantum teleportation between light and matter

    Full text link
    Quantum teleportation is an important ingredient in distributed quantum networks, and can also serve as an elementary operation in quantum computers. Teleportation was first demonstrated as a transfer of a quantum state of light onto another light beam; later developments used optical relays and demonstrated entanglement swapping for continuous variables. The teleportation of a quantum state between two single material particles (trapped ions) has now also been achieved. Here we demonstrate teleportation between objects of a different nature - light and matter, which respectively represent 'flying' and 'stationary' media. A quantum state encoded in a light pulse is teleported onto a macroscopic object (an atomic ensemble containing 10^12 caesium atoms). Deterministic teleportation is achieved for sets of coherent states with mean photon number (n) up to a few hundred. The fidelities are 0.58+-0.02 for n=20 and 0.60+-0.02 for n=5 - higher than any classical state transfer can possibly achieve. Besides being of fundamental interest, teleportation using a macroscopic atomic ensemble is relevant for the practical implementation of a quantum repeater. An important factor for the implementation of quantum networks is the teleportation distance between transmitter and receiver; this is 0.5 metres in the present experiment. As our experiment uses propagating light to achieve the entanglement of light and atoms required for teleportation, the present approach should be scalable to longer distances.Comment: 23 pages, 8 figures, incl. supplementary informatio

    Extracting high fidelity quantum computer hardware from random systems

    Full text link
    An overview of current status and prospects of the development of quantum computer hardware based on inorganic crystals doped with rare-earth ions is presented. Major parts of the experimental work in this area has been done in two places, Canberra, Australia and Lund, Sweden, and the present description follows more closely the Lund work. Techniques will be described that include optimal filtering of the initially inhomogeneously broadened profile down to well separated and narrow ensembles, as well as the use of advanced pulse-shaping in order to achieve robust arbitrary single-qubit operations with fidelities above 90%, as characterized by quantum state tomography. It is expected that full scalability of these systems will require the ability to determine the state of single rare-earth ions. It has been proposed that this can be done using special readout ions doped into the crystal and an update is given on the work to find and characterize such ions. Finally, a few aspects on the possibilities for remote entanglement of ions in separate rare-earth-ion-doped crystals are considered.Comment: 19 pages, 9 figures. Written for The Proceedings of the Nobelsymposium on qubits for future quantum computers, Gothenburg, May-0

    Light-Matter Quantum Interface

    Full text link
    We propose a quantum interface which applies multiple passes of a pulse of light through an atomic sample with phase/polarization rotations in between the passes. Our proposal does not require nonclassical light input or measurements on the system, and it predicts rapidly growing unconditional entanglement of light and atoms from just coherent inputs. The proposed interface makes it possible to achieve a number of tasks within quantum information processing including teleportation between light and atoms, quantum memory for light and squeezing of atomic and light variables.Comment: 4 pages, 4 figure

    Experimental demonstration of quantum memory for light

    Full text link
    The information carrier of today's communications, a weak pulse of light, is an intrinsically quantum object. As a consequence, complete information about the pulse cannot, even in principle, be perfectly recorded in a classical memory. In the field of quantum information this has led to a long standing challenge: how to achieve a high-fidelity transfer of an independently prepared quantum state of light onto the atomic quantum state? Here we propose and experimentally demonstrate a protocol for such quantum memory based on atomic ensembles. We demonstrate for the first time a recording of an externally provided quantum state of light onto the atomic quantum memory with a fidelity up to 70%, significantly higher than that for the classical recording. Quantum storage of light is achieved in three steps: an interaction of light with atoms, the subsequent measurement on the transmitted light, and the feedback onto the atoms conditioned on the measurement result. Density of recorded states 33% higher than that for the best classical recording of light on atoms is achieved. A quantum memory lifetime of up to 4 msec is demonstrated.Comment: 22 pages (double line spacing) incl. supplementary information, 4 figures, accepted for publication in Natur

    Decay dynamics of quantum dots influenced by the local density of optical states of two-dimensional photonic crystal membranes

    Get PDF
    We have performed time-resolved spectroscopy on InAs quantum dot ensembles in photonic crystal membranes. The influence of the photonic crystal is investigated by varying the lattice constant systematically. We observe a strong slow down of the quantum dots' spontaneous emission rates as the two-dimensional bandgap is tuned through their emission frequencies. The measured band edges are in full agreement with theoretical predictions. We characterize the multi-exponential decay curves by their mean decay time and find enhancement of the spontaneous emission at the bandgap edges and strong inhibition inside the bandgap in good agreement with local density of states calculations.Comment: 9 pages (preprint), 3 figure

    Single-Photon Generation from Stored Excitation in an Atomic Ensemble

    Get PDF
    Single photons are generated from an ensemble of cold Cs atoms via the protocol of Duan et al. [Nature \textbf{414}, 413 (2001)]. Conditioned upon an initial detection from field 1 at 852 nm, a photon in field 2 at 894 nm is produced in a controlled fashion from excitation stored within the atomic ensemble. The single-quantum character of the field 2 is demonstrated by the violation of a Cauchy-Schwarz inequality, namely w(12,12∣11)=0.24±0.05≱1w(1_{2},1_{2}|1_{1})=0.24\pm 0.05\ngeq 1, where w(12,12∣11)w(1_{2},1_{2}|1_{1}) describes detection of two events (12,12)(1_{2},1_{2}) conditioned upon an initial detection 111_{1}, with w→0w\to 0 for single photons.Comment: 5 pages, 4 figure
    • 

    corecore