7 research outputs found

    Prolyl Oligopeptidase Regulates Dopamine Transporter Oligomerization and Phosphorylation in a PKC- and ERK-Independent Manner

    Get PDF
    Prolyl oligopeptidase (PREP) is a serine protease that binds to alpha-synuclein (aSyn) and induces its aggregation. PREP inhibitors have been shown to have beneficial effects in Parkinson's disease models by enhancing the clearance of aSyn aggregates and modulating striatal dopamine. Additionally, we have shown that PREP regulates phosphorylation and internalization of dopamine transporter (DAT) in mice. In this study, we clarified the mechanism behind this by using HEK-293 and PREP knock-out HEK-293 cells with DAT transfection. We tested the effects of PREP, PREP inhibition, and alpha-synuclein on PREP-related DAT regulation by using Western blot analysis and a dopamine uptake assay, and characterized the impact of PREP on protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) by using PKC assay and Western blot, respectively, as these kinases regulate DAT phosphorylation. Our results confirmed our previous findings that a lack of PREP can increase phosphorylation and internalization of DAT and decrease uptake of dopamine. PREP inhibition had a variable impact on phosphorylation of ERK dependent on the metabolic state of cells, but did not have an effect on phosphorylation or function of DAT. PREP modifications did not affect PKC activity either. Additionally, a lack of PREP elevated a DAT oligomerization that is associated with intracellular trafficking of DAT. Our results suggest that PREP-mediated phosphorylation, oligomerization, and internalization of DAT is not dependent on PKC or ERK

    Prolyl Oligopeptidase Regulates Dopamine Transporter Phosphorylation in the Nigrostriatal Pathway of Mouse

    Get PDF
    Alpha-synuclein is the main component of Lewy bodies, a histopathological finding of Parkinson's disease. Prolyl oligopeptidase (PREP) is a serine protease that binds to alpha-synuclein and accelerates its aggregation in vitro. PREP enzyme inhibitors have been shown to block the alpha-synuclein aggregation process in vitro and in cellular models, and also to enhance the clearance of alpha-synuclein aggregates in transgenic mouse models. Moreover, PREP inhibitors have induced alterations in dopamine and metabolite levels, and dopamine transporter immunoreactivity in the nigrostriatal tissue. In this study, we characterized the role of PREP in the nigrostriatal dopaminergic and GABAergic systems of wild-type C57Bl/6 and PREP knockout mice, and the effects of PREP overexpression on these systems. Extracellular concentrations of dopamine and protein levels of phosphorylated dopamine transporter were increased and dopamine reuptake was decreased in the striatum of PREP knockout mice, suggesting increased internalization of dopamine transporter from the presynaptic membrane. Furthermore, PREP overexpression increased the level of dopamine transporters in the nigrostriatal tissue but decreased phosphorylated dopamine transporters in the striatum in wild-type mice. Our results suggest that PREP regulates the function of dopamine transporter, possibly by controlling the phosphorylation and transport of dopamine transporter into the striatum or synaptic membrane.Peer reviewe

    Removal of proteinase K resistant alpha Syn species does not correlate with cell survival in a virus vector-based Parkinson's disease mouse model

    Get PDF
    Parkinson's disease (PD) is characterized by degeneration of nigrostriatal dopaminergic neurons and accumu-lation of alpha-synuclein (alpha Syn) as Lewy bodies. Currently, there is no disease-modifying therapy available for PD. We have shown that a small molecular inhibitor for prolyl oligopeptidase (PREP), KYP-2047, relieves alpha Syn-induced toxicity in various PD models by inducing autophagy and preventing alpha Syn aggregation. In this study, we wanted to study the effects of PREP inhibition on different alpha Syn species by using cell culture and in vivo models.We used Neuro2A cells with transient alpha Syn overexpression and oxidative stress or proteasomal inhibition -induced alpha Syn aggregation to assess the effect of KYP-2047 on soluble alpha Syn oligomers and on cell viability. Here, the levels of soluble alpha Syn were measured by using ELISA, and the impact of KYP-2047 was compared to anle138b, nilotinib and deferiprone. To evaluate the effect of KYP-2047 on alpha Syn fibrillization in vivo, we used unilateral nigral AAV1/2-A53T-alpha Syn mouse model, where the KYP-2047 treatment was initiated two-or four -weeks post injection.KYP-2047 and anle138b protected cells from alpha Syn toxicity but interestingly, KYP-2047 did not reduce soluble alpha Syn oligomers. In AAV-A53T-alpha Syn mouse model, KYP-2047 reduced significantly proteinase K-resistant alpha Syn oligomers and oxidative damage related to alpha Syn aggregation. However, the KYP-2047 treatment that was initiated at the time of symptom onset, failed to protect the nigrostriatal dopaminergic neurons. Our results emphasize the importance of whole alpha Syn aggregation process in the pathology of PD and raise an important question about the forms of alpha Syn that are reasonable targets for PD drug therapy.Peer reviewe

    Combination of CDNF and Deep Brain Stimulation Decreases Neurological Deficits in Late-stage Model Parkinson's Disease

    Get PDF
    Several neurotrophic factors ( NTF) are shown to be neuroprotective and neurorestorative in pre-clinical animal models for Parkinson's disease ( PD), particularly in models where striatal dopamine neuron innervation partially exists. The results of clinical trials on late-stage patients have been modest. Subthalamic deep brain stimulation ( STN DBS) is a proven treatment for a selected group of advanced PD patients. The cerebral dopamine neurotrophic factor ( CDNF) is a promising therapeutic protein, but its effects in animal models of late-stage PD have remained under-researched. The interactions of NTF and STN DBS treatments have not been studied before. We found that a nigral CDNF protein alone had only a marginal effect on the behavioral deficits in a late-stage hemiparkinsonian rat model ( 6-OHDA MFB). However, CDNF improved the effect of acute STN DBS on front limb use asymmetry at 2 and 3 weeks after CDNF injection. STN lesion-modeling chronic stimulation-had an additive effect in reducing front limb use in the cylinder test and apomorphine-induced rotation. The combination of CDNF and acute STN DBS had a favorable effect on striatal tyrosine hydroxylase. This study presents a novel additive beneficial effect of NTF and STN DBS, which might be explained by the interaction of DBS-induced endogenous NTFs and exogenously injected CDNF. SNpc can be reached via similar trajectories used in clinical STN DBS, and this interaction is an important area for future studies. (C) 2018 The Authors. Published by Elsevier Ltd on behalf of IBRO. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/).Peer reviewe

    Prolyl Oligopeptidase Regulates Dopamine Transporter Oligomerization and Phosphorylation in a PKC- and ERK-Independent Manner

    Get PDF
    Prolyl oligopeptidase (PREP) is a serine protease that binds to alpha-synuclein (aSyn) and induces its aggregation. PREP inhibitors have been shown to have beneficial effects in Parkinson's disease models by enhancing the clearance of aSyn aggregates and modulating striatal dopamine. Additionally, we have shown that PREP regulates phosphorylation and internalization of dopamine transporter (DAT) in mice. In this study, we clarified the mechanism behind this by using HEK-293 and PREP knock-out HEK-293 cells with DAT transfection. We tested the effects of PREP, PREP inhibition, and alpha-synuclein on PREP-related DAT regulation by using Western blot analysis and a dopamine uptake assay, and characterized the impact of PREP on protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) by using PKC assay and Western blot, respectively, as these kinases regulate DAT phosphorylation. Our results confirmed our previous findings that a lack of PREP can increase phosphorylation and internalization of DAT and decrease uptake of dopamine. PREP inhibition had a variable impact on phosphorylation of ERK dependent on the metabolic state of cells, but did not have an effect on phosphorylation or function of DAT. PREP modifications did not affect PKC activity either. Additionally, a lack of PREP elevated a DAT oligomerization that is associated with intracellular trafficking of DAT. Our results suggest that PREP-mediated phosphorylation, oligomerization, and internalization of DAT is not dependent on PKC or ERK.Peer reviewe

    Nonpeptidic Oxazole-Based Prolyl Oligopeptidase Ligands with Disease-Modifying Effects on alpha-Synuclein Mouse Models of Parkinson's Disease

    No full text
    Prolyl oligopeptidase (PREP) is a widely distributedserine proteasein the human body cleaving proline-containing peptides; however, recentstudies suggest that its effects on pathogenic processes underlyingneurodegeneration are derived from direct protein-protein interactions(PPIs) and not from its regulation of certain neuropeptide levels.We discovered novel nonpeptidic oxazole-based PREP inhibitors, whichdeviate from the known structure-activity relationship forPREP inhibitors. These new compounds are effective modulators of thePPIs of PREP, reducing alpha-synuclein (alpha Syn) dimerizationand enhancing protein phosphatase 2A activity in a concentration-responsemanner, as well as reducing reactive oxygen species production. Fromthe best performing oxazoles, HUP-55 was selected for in vivo studies. Its brain penetration was evaluated, andit was tested in alpha Syn virus vector-based and alpha Syn transgenicmouse models of Parkinson's disease, where it restored motorimpairment and reduced levels of oligomerized alpha Syn in the striatumand substantia nigra.Peer reviewe
    corecore