6 research outputs found

    Postharvest Treatments Improve Quality of Cut Peony Flowers

    No full text
    Peony is one of the most important ornamental plants in the international flower market, but has a relatively short vase life in water. This study tested the effects of 8-hydroxyquinoline citrate (8-HQC) and nanosilver (NS) in combination with sucrose, as well as two commercial preservatives, on the longevity and some physiological and biochemical aspects of senescence of cut flowers of 14 cultivars. Responses varied both by cultivar and treatment. The preservatives extended the vase life in only five cultivars; however, in nine cultivars, preservatives increased the flower diameter and improved the general flower appearance. Blockages in xylem vessels started to appear soon after harvest. Both NS and 8-HQC with sucrose prevented tylose formation, while bacterial blockages were reduced only by the NS solution. Reduction in stem blockages did not translate into better water balance or flower longevity. The highest carbohydrate accumulation in petals was observed in the NS solution. Preservatives mitigated the rise in free amino acids, including free proline. They did not prevent an increase in H2O2 content but flowers in preservatives generally had higher catalase activity than in the control. As solutions with NS produced comparable or even better results than 8-HQC, we recommend the latter as a component of a preservative for cut peony flowers. However, cultivar-specific responses indicate that postharvest treatments must be individually tailored to each cultivar

    Effect of postharvest treatments on the longevity of cut inflorescences of ‘Rialto’ oriental lily

    No full text
    Cut lily flowers are very popular but their longevity is not satisfactory. The quality of cut lily flowers is determined by two factors: the longevity of the flowers and the general appearance of the entire cut stem during its vase life. The aim of this work was to evaluate the effects of gibberellic acid (GA3), standard preservative (8HQC and 2% sucrose) and commercial preservatives Chrysal Professional 2 and Chrysal sachet as well as Floralife 200 and Floralife 300 on the quality of ‘Rialto’ cut oriental lily, a white blooming cultivar very popular on the Polish market. The contents of reducing sugars, soluble proteins, free amino acids and free proline were also determined in the senescing flowers. As a major problem in the postharvest handling of lilies is leaf yellowing, the effects of postharvest treatments on the quality of leaves and their chlorophyll contents were also studied. Conditioning (24 h) with GA3 (500 mg d.m.−3) immediately after harvest delayed chlorophyll loss in leaves. When combined with the standard preservative and commercial preparations Chrysal Professional 2 and Chrysal sachet as well as Floralife 200 and Floralife 300, GA3 prolonged flower vase life. The most effective method was using GA3 and Floralife products, which prolonged the vase life of flowers to 23 days, 43% longer relative to the untreated flowers, and maintained the decorative value of the leaves (53 days). During the senescence of flowers held in water, the contents of reducing sugars, free amino acids and proline increased. However, the holding solutions modified changes in these parameters relative to the control

    The effect of cycloheximide and growth regulators on the senescence of cut leaves in Hosta sp. and Zantedeschia aethiopica

    No full text
    The leaves of Zantedeschia and Hosta are used as florist greens in different floral arrangements. The most efficient postharvest treatment for cut foliage is the use of growth regulators, which prolong their vase life by delaying degradative changes occurring in leaves, especially proteolysis. Cycloheximide (CHI) is one of the protein synthesis inhibitors, blocking the enzymes responsible for decreasing membrane integrity, a phenomenon hastening senescence. The aim of this experiment was to evaluate the effects of CHI and benzyladenine (BA) or gibberellic acid (GA3) on the longevity of cut foliage in hosta (Hosta sp.) cultivars and Ethiopian calla (Zantedeschia aethiopica) and to follow the changes in certain proteolytic processes occurring during senescence. Generally, 24 h conditioning with cycloheximide shortened the longevity of cut calla leaves while having no effect on hosta vase life. In ageing leaves of ‘Minima Glauca’ hosta and calla, the total proteolytic activity increased, including that of cysteine protease. Due to the application of BA or GA3 in hosta and calla, respectively, this activity was limited. On the contrary, the use of CHI either did not affect the activity of cysteine protease or increased it several-fold relative to the control, in hosta and calla, respectively. Leaves treated with growth regulators had many more soluble proteins and fewer free amino acids, including free proline, than leaves from other treatments. The highest free proline level was determined in calla leaves conditioned with CHI, where it increased 18-fold relative to the initial level

    Identification of Xylem Occlusions Occurring in Cut Clematis (Clematis L., fam. Ranunculaceae Juss.) Stems during Their Vase Life

    Get PDF
    During the vase life of cut stems obstruction of xylem vessels occurs due to microbial growth, formation of tyloses, deposition of materials in the lumen of xylem vessels and the presence of air emboli in the vascular system. Such obstructions may restrict water uptake and its transport towards upwards thus lowering their ornamental value and longevity of cut flowers. Clematis is a very attractive plant material which may be used as cut flower in floral compositions. Nothing is known about the histochemical or cytological nature of xylem blockages occurring in cut stems of this plant. This study shows that in clematis, tyloses are the main source of occlusions, although bacteria and some amorphic substances may also appear inside the vessels. A preservative composed of 200 mg dm−3 8-HQC (8-hydroxyquinolin citrate) and 2% sucrose arrested bacterial development and the growth of tyloses. This information can be helpful in the development of new treatments to improve keeping qualities of cut clematis stems
    corecore