343 research outputs found

    Megahertz Schlieren Imaging of Shock Structure and Sound Waves in Under-Expanded, Impinging Jets

    Get PDF
    The accompanying fluid dynamics videos visualize the temporal evolution of shock structures and sound waves in and around an under-expanded jet that is impinging on a rigid surface at varying pressure ratios. The recordings were obtained at frame rates of 500 kHz to 1 Mhz using a novel pulsed illumination source based on a high power light emitting diode (LED) which is operated in pulsed current mode synchronized to the camera frame rate.Comment: Contribution to "Gallery of Fluid Motion", 63rd Annual APS-DFD Meeting, Long Beach (CA

    Mean flow stability analysis of oscillating jet experiments

    Get PDF
    Linear stability analysis is applied to the mean flow of an oscillating round jet with the aim to investigate the robustness and accuracy of mean flow stability wave models. The jet's axisymmetric mode is excited at the nozzle lip through a sinusoidal modulation of the flow rate at amplitudes ranging from 0.1 % to 100 %. The instantaneous flow field is measured via particle image velocimetry and decomposed into a mean and periodic part utilizing proper orthogonal decomposition. Local linear stability analysis is applied to the measured mean flow adopting a weakly nonparallel flow approach. The resulting global perturbation field is carefully compared to the measurements in terms of spatial growth rate, phase velocity, and phase and amplitude distribution. It is shown that the stability wave model accurately predicts the excited flow oscillations during their entire growth phase and during a large part of their decay phase. The stability wave model applies over a wide range of forcing amplitudes, showing no pronounced sensitivity to the strength of nonlinear saturation. The upstream displacement of the neutral point and the successive reduction of gain with increasing forcing amplitude is very well captured by the stability wave model. At very strong forcing (>40%), the flow becomes essentially stable to the axisymmetric mode. For these extreme cases, the prediction deteriorates from the measurements due to an interaction of the forced wave with the geometric confinement of the nozzle. Moreover, the model fails far downstream in a region where energy is transferred from the oscillation back to the mean flow. This study supports previously conducted mean flow stability analysis of self-excited flow oscillations in the cylinder wake and in the vortex breakdown bubble and extends the methodology to externally forced convectively unstable flows.Comment: submitted to the Journal of Fluid Mechanic

    On the role of pressure in elasto-inertial turbulence

    Full text link
    The dynamics of elasto-inertial turbulence is investigated numerically from the perspective of the coupling between polymer dynamics and flow structures. In particular, direct numerical simulations of channel flow with Reynolds numbers ranging from 1000 to 6000 are used to study the formation and dynamics of elastic instabilities and their effects on the flow. Based on the splitting of the pressure into inertial and polymeric contributions, it is shown that the polymeric pressure is a non-negligible component of the total pressure fluctuations, although the rapid inertial part dominates. Unlike Newtonian flows, the slow inertial part is almost negligible in elasto-inertial turbulence. Statistics on the different terms of the Reynolds stress transport equation also illustrate the energy transfers between polymers and turbulence and the redistributive role of pressure. Finally, the trains of cylindrical structures around sheets of high polymer extension that are characteristics of elasto-inertial turbulence are shown to be correlated with the polymeric pressure fluctuations

    A Robust Adaptive Dead-Time Compensator with Application to A Solar Collector Field

    Get PDF
    This paper describes an easy-to-use PI controller with dead-time compensation that presents robust behaviour and can be applied to plants with variable dead-time. The formulation is based on an adaptive Smith predictor structure plus the addition of a filter acting on the error between the output and its prediction in order to improve robustness. The implementation of the control law is straightforward, and the filter needs no adjustment, since it is directly related to the plant dead-time. An application to an experimentally validated nonlinear model of a solar plant shows that this controller can improve the performance of classical PID controllers without the need of complex calculations.Ministerio de Ciencia y Tecnología TAP95-37

    Stability Analysis of Time-averaged Jet Flows: Fundamentals and Application

    Get PDF
    We report on experimental and theoretical investigations of shear flow instabilities in jet flows. Linear stability analysis is applied to the time-averaged flow taken from experiments, contrasting the ‘classic’ stability approach that is based on a stationary base flow. To some extend, mean flow stability eigenmodes may deal as a model for instability waves at their nonlinearly saturated state, which is typically encountered in experiments. The capability of mean flow stability models is first demonstrated on laminar oscillating jets where the primary interaction takes place between the mean flow and the instability wave. We then focus on turbulent swirling jets where additional interactions occur between the fine-scale turbulence and the instability waves. Swirling flows are widely used in combustion applications where the associated high turbulence levels and internal recirculation zones (vortex breakdown bubble) are exploited for flame stabilization. We demonstrate the application of mean flow stability analysis on the flow field of a industry- relevant swirl-stabilized flame. We show that the flame response to acoutstic perturbations is closely linked to the flow receptivity predicted from linear stability analysis, which suggests that the adopted theoretical framework is very useful for thermoacoustic modeling

    Analytical approach to ground heat losses for high temperature thermal storage systems

    Get PDF
    A new approach to estimate the heat loss from thermal energy storage tank foundations is presented. Results are presented through analytical correlations based on numerical solutions for the steady-state heat conduction problem for thermal energy slab-on-grade tanks with uniform insulation. Model results were verified with other well-established benchmark problems with similar boundary conditions and validated with experimental data with excellent agreement. In addition to the TES foundation heat loss, new correlations for the maximum temperature and for the radial evolution of the temperature underneath the insulation layer are also provided, giving important information related to the tank foundation design. The correlated variables are of primordial importance in the tank foundation design because, due to the typical high operating storage temperatures, an inappropriate tank foundation insulation would lead not only to a not desired loss of energy but also to an inadmissible increase of the temperatures underneath the insulation layer, affecting the structural stability of the tank. The proposed correlations provide a quick method for the estimation of total tank foundation heat losses and soil maximum temperature reached underneath the insulation layer, saving time, and cost on the engineering tank foundation design process. Finally, a comprehensive parametric analysis of the variables of interest is made and a set of cases covering a wide range of tank sizes, insulation levels, depths to water table, and storage temperatures are solved
    • …
    corecore