14 research outputs found

    Source data for samples included in this study.

    No full text
    Listed are institute, specimen code, sample type, Ct value, sequencing platform, percent genome coverage at 10×, and accession numbers. (XLSX)</p

    Source data for Fig 4.

    No full text
    The 2022 multicountry mpox outbreak concurrent with the ongoing Coronavirus Disease 2019 (COVID-19) pandemic further highlighted the need for genomic surveillance and rapid pathogen whole-genome sequencing. While metagenomic sequencing approaches have been used to sequence many of the early mpox infections, these methods are resource intensive and require samples with high viral DNA concentrations. Given the atypical clinical presentation of cases associated with the outbreak and uncertainty regarding viral load across both the course of infection and anatomical body sites, there was an urgent need for a more sensitive and broadly applicable sequencing approach. Highly multiplexed amplicon-based sequencing (PrimalSeq) was initially developed for sequencing of Zika virus, and later adapted as the main sequencing approach for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Here, we used PrimalScheme to develop a primer scheme for human monkeypox virus that can be used with many sequencing and bioinformatics pipelines implemented in public health laboratories during the COVID-19 pandemic. We sequenced clinical specimens that tested presumptively positive for human monkeypox virus with amplicon-based and metagenomic sequencing approaches. We found notably higher genome coverage across the virus genome, with minimal amplicon drop-outs, in using the amplicon-based sequencing approach, particularly in higher PCR cycle threshold (Ct) (lower DNA titer) samples. Further testing demonstrated that Ct value correlated with the number of sequencing reads and influenced the percent genome coverage. To maximize genome coverage when resources are limited, we recommend selecting samples with a PCR Ct below 31 Ct and generating 1 million sequencing reads per sample. To support national and international public health genomic surveillance efforts, we sent out primer pool aliquots to 10 laboratories across the United States, United Kingdom, Brazil, and Portugal. These public health laboratories successfully implemented the human monkeypox virus primer scheme in various amplicon sequencing workflows and with different sample types across a range of Ct values. Thus, we show that amplicon-based sequencing can provide a rapidly deployable, cost-effective, and flexible approach to pathogen whole-genome sequencing in response to newly emerging pathogens. Importantly, through the implementation of our primer scheme into existing SARS-CoV-2 workflows and across a range of sample types and sequencing platforms, we further demonstrate the potential of this approach for rapid outbreak response.</div

    Percent genome coverage at 10× read depth for clinical specimens sequenced with the amplicon-based sequencing approach.

    No full text
    (A) Lesion swabs (n = 10) sequenced by the DPHL. Data are fitted with a logistic function and the dashed line corresponds to 80% genome coverage at a threshold of Ct 28.9. (B) Dry vesicle swabs (n = 56) from various anatomical sites and sequenced by the RIDOH RISHL. Data are fitted with a logistic function and the dashed line corresponds to 80% genome coverage at a threshold of Ct 31.2. (C) Lesion swabs (n = 6) sequenced by the FDH. Data are fitted with a logistic function and the dashed line corresponds to 80% genome coverage at a threshold of Ct 30.6. (D) Lesion swabs (n = 9) sequenced by IBL. Data are fitted with a logistic function. (E) Lesion swabs (n = 27) sequenced by the LACPHL. Data are fitted with a logistic function. (F) Lesion swabs (n = 25) from various anatomical sites and sequenced by the MDH. Data are fitted with a logistic function. (G) Clinical specimens (n = 19) consisting of lesion swabs and crusts of healing lesions sequenced by the CEVS. Data are fitted with a logistic function. (H) Clinical specimens (n = 78) consisting of lesion swabs from various anatomical sites as well as oropharyngeal swabs sequenced by INSA. (I) Vesicle swabs (n = 34) from various anatomical sites tested in parallel on Illumina and ONT sequencing platforms by the NHS. Data from both sequencing platforms are fitted with logistic function and the dashed lines correspond to 80% genome coverage at a threshold of Ct 25.6 on the Illumina platform and Ct 24.7 on the ONT platform. (J) Lesion swabs (n = 8) sequenced on the ONT platform by JHMI. Source data can be found in S5 Data. CEVS, Centro Estadual de Vigilância em Saúde; Ct, cycle threshold; DPHL, Delaware Public Health Lab; FDH, Florida Department of Health; IBL, Idaho Bureau of Laboratories; INSA, National Institute of Health Dr. Ricardo Jorge; JHMI, Johns Hopkins Medical Institutions; LACPHL, Los Angeles County Public Health Lab; MDH, Minnesota Department of Health; NHS, National Health Service; ONT, Oxford Nanopore Technology; RIDOH RISHL, Rhode Island Department of Health/Rhode Island State Health Laboratory.</p

    Source data for Fig 3.

    No full text
    The 2022 multicountry mpox outbreak concurrent with the ongoing Coronavirus Disease 2019 (COVID-19) pandemic further highlighted the need for genomic surveillance and rapid pathogen whole-genome sequencing. While metagenomic sequencing approaches have been used to sequence many of the early mpox infections, these methods are resource intensive and require samples with high viral DNA concentrations. Given the atypical clinical presentation of cases associated with the outbreak and uncertainty regarding viral load across both the course of infection and anatomical body sites, there was an urgent need for a more sensitive and broadly applicable sequencing approach. Highly multiplexed amplicon-based sequencing (PrimalSeq) was initially developed for sequencing of Zika virus, and later adapted as the main sequencing approach for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Here, we used PrimalScheme to develop a primer scheme for human monkeypox virus that can be used with many sequencing and bioinformatics pipelines implemented in public health laboratories during the COVID-19 pandemic. We sequenced clinical specimens that tested presumptively positive for human monkeypox virus with amplicon-based and metagenomic sequencing approaches. We found notably higher genome coverage across the virus genome, with minimal amplicon drop-outs, in using the amplicon-based sequencing approach, particularly in higher PCR cycle threshold (Ct) (lower DNA titer) samples. Further testing demonstrated that Ct value correlated with the number of sequencing reads and influenced the percent genome coverage. To maximize genome coverage when resources are limited, we recommend selecting samples with a PCR Ct below 31 Ct and generating 1 million sequencing reads per sample. To support national and international public health genomic surveillance efforts, we sent out primer pool aliquots to 10 laboratories across the United States, United Kingdom, Brazil, and Portugal. These public health laboratories successfully implemented the human monkeypox virus primer scheme in various amplicon sequencing workflows and with different sample types across a range of Ct values. Thus, we show that amplicon-based sequencing can provide a rapidly deployable, cost-effective, and flexible approach to pathogen whole-genome sequencing in response to newly emerging pathogens. Importantly, through the implementation of our primer scheme into existing SARS-CoV-2 workflows and across a range of sample types and sequencing platforms, we further demonstrate the potential of this approach for rapid outbreak response.</div

    Geographical distribution of public health laboratories that implemented the human monkeypox virus primer scheme with their established amplicon-based sequencing workflows.

    No full text
    Public health laboratories contributing data to this study include: CDPH, CEVS, DPHL, FDH, IBL, JHMI, LACPHL, MASPHL, MDH, NHS Lothian, INSA, and RISHL. The base layer of the map has been sourced from Carto (https://docs.carto.com/development-tools/carto-for-react/guides/basemaps) under an open source CC-BY license (https://github.com/CartoDB/basemap-styles/blob/master/LICENSE.md). CDPH, Connecticut Department of Public Health; CEVS, Centro Estadual de Vigilância em Saúde; DPHL, Delaware Public Health Lab; FDH, Florida Department of Health; IBL, Idaho Bureau of Laboratories; INSA, National Institute of Health Dr. Ricardo Jorge; JHMI, Johns Hopkins Medical Institutions; LACPHL, Los Angeles County Public Health Lab; MASPHL, Massachusetts State Public Health Laboratory; MDH, Minnesota Department of Health; NHS Lothian, National Health Service Lothian; RISHL, Rhode Island State Health Laboratory.</p

    Ethical oversight.

    No full text
    The 2022 multicountry mpox outbreak concurrent with the ongoing Coronavirus Disease 2019 (COVID-19) pandemic further highlighted the need for genomic surveillance and rapid pathogen whole-genome sequencing. While metagenomic sequencing approaches have been used to sequence many of the early mpox infections, these methods are resource intensive and require samples with high viral DNA concentrations. Given the atypical clinical presentation of cases associated with the outbreak and uncertainty regarding viral load across both the course of infection and anatomical body sites, there was an urgent need for a more sensitive and broadly applicable sequencing approach. Highly multiplexed amplicon-based sequencing (PrimalSeq) was initially developed for sequencing of Zika virus, and later adapted as the main sequencing approach for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Here, we used PrimalScheme to develop a primer scheme for human monkeypox virus that can be used with many sequencing and bioinformatics pipelines implemented in public health laboratories during the COVID-19 pandemic. We sequenced clinical specimens that tested presumptively positive for human monkeypox virus with amplicon-based and metagenomic sequencing approaches. We found notably higher genome coverage across the virus genome, with minimal amplicon drop-outs, in using the amplicon-based sequencing approach, particularly in higher PCR cycle threshold (Ct) (lower DNA titer) samples. Further testing demonstrated that Ct value correlated with the number of sequencing reads and influenced the percent genome coverage. To maximize genome coverage when resources are limited, we recommend selecting samples with a PCR Ct below 31 Ct and generating 1 million sequencing reads per sample. To support national and international public health genomic surveillance efforts, we sent out primer pool aliquots to 10 laboratories across the United States, United Kingdom, Brazil, and Portugal. These public health laboratories successfully implemented the human monkeypox virus primer scheme in various amplicon sequencing workflows and with different sample types across a range of Ct values. Thus, we show that amplicon-based sequencing can provide a rapidly deployable, cost-effective, and flexible approach to pathogen whole-genome sequencing in response to newly emerging pathogens. Importantly, through the implementation of our primer scheme into existing SARS-CoV-2 workflows and across a range of sample types and sequencing platforms, we further demonstrate the potential of this approach for rapid outbreak response.</div

    Source data for Fig 1.

    No full text
    The 2022 multicountry mpox outbreak concurrent with the ongoing Coronavirus Disease 2019 (COVID-19) pandemic further highlighted the need for genomic surveillance and rapid pathogen whole-genome sequencing. While metagenomic sequencing approaches have been used to sequence many of the early mpox infections, these methods are resource intensive and require samples with high viral DNA concentrations. Given the atypical clinical presentation of cases associated with the outbreak and uncertainty regarding viral load across both the course of infection and anatomical body sites, there was an urgent need for a more sensitive and broadly applicable sequencing approach. Highly multiplexed amplicon-based sequencing (PrimalSeq) was initially developed for sequencing of Zika virus, and later adapted as the main sequencing approach for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Here, we used PrimalScheme to develop a primer scheme for human monkeypox virus that can be used with many sequencing and bioinformatics pipelines implemented in public health laboratories during the COVID-19 pandemic. We sequenced clinical specimens that tested presumptively positive for human monkeypox virus with amplicon-based and metagenomic sequencing approaches. We found notably higher genome coverage across the virus genome, with minimal amplicon drop-outs, in using the amplicon-based sequencing approach, particularly in higher PCR cycle threshold (Ct) (lower DNA titer) samples. Further testing demonstrated that Ct value correlated with the number of sequencing reads and influenced the percent genome coverage. To maximize genome coverage when resources are limited, we recommend selecting samples with a PCR Ct below 31 Ct and generating 1 million sequencing reads per sample. To support national and international public health genomic surveillance efforts, we sent out primer pool aliquots to 10 laboratories across the United States, United Kingdom, Brazil, and Portugal. These public health laboratories successfully implemented the human monkeypox virus primer scheme in various amplicon sequencing workflows and with different sample types across a range of Ct values. Thus, we show that amplicon-based sequencing can provide a rapidly deployable, cost-effective, and flexible approach to pathogen whole-genome sequencing in response to newly emerging pathogens. Importantly, through the implementation of our primer scheme into existing SARS-CoV-2 workflows and across a range of sample types and sequencing platforms, we further demonstrate the potential of this approach for rapid outbreak response.</div
    corecore