34 research outputs found

    Symétrie brisée et renforcement de contacts cellulaires

    No full text
    We studied the growth of asymmetric cellular contacts : adherens junctions and focal contacts. We showed, by imaging, micromanipulation and cellular assembly modification experiments, that adherens junctions between two apparently identical cells exhibit a symmetry breaking due to different roles of actin cytoskeleton for both cells in contact : the “donor” cell polymerizes actin which leads to cell membranes contact; as a response, the “receiving” cell assembles acto-myosin bundles which promotes local force application on the junctions and a consequent increase of their length. Growth curves of adherens junctions when cell contractility is increased using controlled nocodazole concentrations have been measured. Fits of experimental growth curves allowed a determination of the contractile forces applied by the “receiving” cell. We were thus able to obtain for the first time the force-extension diagram for adherens junctions by a non-invasive method. The biological approaches used to name the key cytoskeletal players and the physical approaches used to fit growth laws have both shown that intercellular contacts exhibits local reinforcement in a manner similar to focal contact reinforcement. We have finally observed by TIRFM internal dynamics of growing focal contacts using different labelled proteins (fibronectin, integrin, vinculin, actin) in order to propose a mechanosensing mechanism.Nous avons étudié la croissance de contacts cellulaires asymétriques: les jonctions adhérentes et les contacts focaux. Nous avons montré par des expériences d'imageries, de micromanipulation, et d'altération des assemblages cellulaires, que la brisure de symétrie des jonctions adhérentes entre des cellules apparemment identiques s'explique par des rôles différents du cytosquelette d'actine des deux cellules formant le contact. Une cellule «donneuse» polymérise de l'actine, ce qui amène les membranes cellulaires en contact. La cellule «receveuse» assemble des faisceaux contractiles d'acto-myosine qui exercent localement des forces sur les jonctions et régulent leur longueur. Des courbes de croissance de ces jonctions adhérentes ont par ailleurs été mesurées pour des cellules soumises à des augmentations contrôlées de force contractile par incubation dans le nocodazole. L'ajustement des courbes de croissance expérimentales par des lois théoriques a permis de déterminer les forces contractiles mises en jeu par la cellule «receveuse». Le tracé du diagramme force-extension des jonctions adhérentes a pu donc être réalisé pour la première fois et par une méthode non-invasive. Les approches biologiques pour l'identification des assemblages en jeu et physiques pour l'ajustement des lois de croissance ont l'une et l'autre montré que les contacts entre cellules se renforcent localement à la manière des contacts focaux. Nous avons enfin observé la dynamique interne des contacts focaux en croissance par TIRFM pour différentes protéines participant au contact (fibronectine, intégrine, vinculine, actine) afin de proposer un mécanisme de mécanosension

    Force-extension relationship of cell-cell contacts

    No full text
    International audienc

    Symétrie brisée et renforcement de contacts cellulaires

    No full text
    Nous avons étudié la croissance de contacts cellulaires asymétriques: les jonctions adhérentes et les contacts focaux. Nous avons montré par des expériences d'imageries, de micromanipulation, et d'altération des assemblages cellulaires, que la brisure de symétrie des jonctions adhérentes entre des cellules apparemment identiques s'explique par des rôles différents du cytosquelette d'actine des deux cellules formant le contact. Une cellule "donneuse" polymérise de l'actine, ce qui amène les membranes cellulaires en contact. La cellule "receveuse" assemble des faisceaux contractiles d'acto-myosine qui exercent localement des forces sur les jonctions et régulent leur longueur. Des courbes de croissance de ces jonctions adhérentes ont par ailleurs été mesurées pour des cellules soumises à des augmentations contrôlées de force contractile par incubation dans le nocodazole. L'ajustement des courbes de croissance expérimentales par des lois théoriques a permis de déterminer les forces contractiles mises en jeu par la cellule "receveuse". Le tracé du diagramme force-extension des jonctions adhérentes a pu donc être réalisé pour la première fois et par une méthode non-invasive. Les approches biologiques pour l'identification des assemblages en jeu et physiques pour l'ajustement des lois de croissance ont l'une et l'autre montré que les contacts entre cellules se renforcent localement à la manière des contacts focaux. Nous avons enfin observé la dynamique interne des contacts focaux en croissance par TIRFM pour différentes protéines participant au contact (fibronectine, intégrine, vinculine, actine) afin de proposer un mécanisme de mécanosension.GRENOBLE1-BU Sciences (384212103) / SudocSudocFranceF

    Scaling concepts in cell physics: paradigms for cell adhesion

    No full text
    International audienceShapes and lengths are treated differently in cell biology and in physics. In cell biology, morphology is considered a powerful read-out for estimating protein activities and for classifying pathways. Spatial features are often viewed as binary signals, on or off, active or non-active. In contrast, in condensed matter physics, spatial dimensions are generally derived quantitatively with scaling relations using the mechanical properties of matter. This powerful approach allows predicting scales in new experiments. Here, we applied such a type of scaling method for specific organelles in cells: the cell adhesion structures. We show that simple relations allow one to derive measured lengths in a variety of situations and proteic complexes; if the molecular detail is not at play in such an approach, the mesoscopic equations allow one to quantitatively match the experimental observations. Based on these relations, we also predict simple rules for varying lengths of contacts and distances between contacts in future experiments

    The asymmetric self-assembly mechanism of adherents junctions : a cellular push-pull unit physical biology

    No full text
    International audienceo form adherens junctions (AJ), cells first establish contact by sending out lamellipodia onto neighboring cells. We investigated the role of contacting cells in AJ assembly by studying an asymmetric AJ motif: finger-like AJ extending across the cell-cell interface. Using a cytoskeleton replica and immunofluorescence, we observed that actin bundles embedded in the lamellipodia are co-localized with stress fibers in the neighboring cell at the AJ. This suggests that donor lamellipodia present actin fingers, which are stabilized by acceptor lamellae via acto-myosin contractility. Indeed, we show that changes in actin network geometry promoted by Rac overexpression lead to corresponding changes in AJ morphology. Moreover, contractility inhibition and enhancement (via drugs or local traction) lead respectively to the disappearance and further growth of AJ fingers. Thus, we propose that receiving lamellae exert a local pull on AJ, promoting further polymerization of the donor actin bundles. In spite of different compositions, AJ and focal contacts both act as cellular mechanosensors

    Taylor–Couette vortex flow of ceramic dispersions

    No full text
    International audienc
    corecore