120 research outputs found

    Local matching indicators for transport with concave costs

    Full text link
    In this note, we introduce a class of indicators that enable to compute efficiently optimal transport plans associated to arbitrary distributions of NN demands and NN supplies in R\mathbf{R} in the case where the cost function is concave. The computational cost of these indicators is small and independent of NN. A hierarchical use of them enables to obtain an efficient algorithm

    Local matching indicators for transport problems with concave costs

    Full text link
    In this paper, we introduce a class of indicators that enable to compute efficiently optimal transport plans associated to arbitrary distributions of N demands and M supplies in R in the case where the cost function is concave. The computational cost of these indicators is small and independent of N. A hierarchical use of them enables to obtain an efficient algorithm

    Fast transport optimization for Monge costs on the circle

    Full text link
    Consider the problem of optimally matching two measures on the circle, or equivalently two periodic measures on the real line, and suppose the cost of matching two points satisfies the Monge condition. We introduce a notion of locally optimal transport plan, motivated by the weak KAM (Aubry-Mather) theory, and show that all locally optimal transport plans are conjugate to shifts and that the cost of a locally optimal transport plan is a convex function of a shift parameter. This theory is applied to a transportation problem arising in image processing: for two sets of point masses on the circle, both of which have the same total mass, find an optimal transport plan with respect to a given cost function satisfying the Monge condition. In the circular case the sorting strategy fails to provide a unique candidate solution and a naive approach requires a quadratic number of operations. For the case of NN real-valued point masses we present an O(N |log epsilon|) algorithm that approximates the optimal cost within epsilon; when all masses are integer multiples of 1/M, the algorithm gives an exact solution in O(N log M) operations.Comment: Added affiliation for the third author in arXiv metadata; no change in the source. AMS-LaTeX, 20 pages, 5 figures (pgf/TiKZ and embedded PostScript). Article accepted to SIAM J. Applied Mat

    Local matching indicators for concave transport costs

    Get PDF
    International audienceIn this note, we introduce a class of indicators that enable to compute efficiently optimal transport plans associated to arbitrary distributions of NN demands and NN supplies in R\mathbf{R} in the case where the cost function is concave. The computational cost of these indicators is small and independent of NN. A hierarchical use of them enables to obtain an efficient algorithm

    How context affects transdisciplinary research: insights from Asia, Africa and Latin America

    Get PDF
    Transdisciplinary research (TDR) has been developed to generate knowledge that effectively fosters the capabilities of various societal actors to realize sustainability transformations. The development of TDR theories, principles, and methods has been largely governed by researchers from the global North and has reflected their contextual conditions. To enable more contextsensitive TDR framing, we sought to identify which contextual characteristics affect the design and implementation of TDR in six case studies in Asia, Latin America, and Africa, and what this means for TDR as a scientific approach. To this end, we distinguished four TDR process elements and identified several associated context dimensions that appeared to influence them. Our analysis showed that contextual characteristics prevalent in many Southern research sites—such as highly volatile socio-political situations and relatively weak support infrastructure—can make TDR a challenging endeavour. However, we also observed a high degree of variation in the contextual characteristics of our sites in the global South, including regarding group deliberation, research freedom, and dominant perceptions of the appropriate relationship between science, society, and policy. We argue that TDR in these contexts requires pragmatic adaptations as well as more fundamental reflection on underlying epistemological concepts around what it means to conduct “good science”, as certain contextual characteristics may influence core epistemological values of TDR

    Malaria and other vector-borne infection surveillance in the U.S. Department of Defense Armed Forces Health Surveillance Center-Global Emerging Infections Surveillance program: review of 2009 accomplishments

    Get PDF
    Vector-borne infections (VBI) are defined as infectious diseases transmitted by the bite or mechanical transfer of arthropod vectors. They constitute a significant proportion of the global infectious disease burden. United States (U.S.) Department of Defense (DoD) personnel are especially vulnerable to VBIs due to occupational contact with arthropod vectors, immunological naiveté to previously unencountered pathogens, and limited diagnostic and treatment options available in the austere and unstable environments sometimes associated with military operations. In addition to the risk uniquely encountered by military populations, other factors have driven the worldwide emergence of VBIs. Unprecedented levels of global travel, tourism and trade, and blurred lines of demarcation between zoonotic VBI reservoirs and human populations increase vector exposure. Urban growth in previously undeveloped regions and perturbations in global weather patterns also contribute to the rise of VBIs. The Armed Forces Health Surveillance Center-Global Emerging Infections Surveillance and Response System (AFHSC-GEIS) and its partners at DoD overseas laboratories form a network to better characterize the nature, emergence and growth of VBIs globally. In 2009 the network tested 19,730 specimens from 25 sites for Plasmodium species and malaria drug resistance phenotypes and nearly another 10,000 samples to determine the etiologies of non-Plasmodium species VBIs from regions spanning from Oceania to Africa, South America, and northeast, south and Southeast Asia. This review describes recent VBI-related epidemiological studies conducted by AFHSC-GEIS partner laboratories within the OCONUS DoD laboratory network emphasizing their impact on human populations

    Evaluating the role of serotonin in hot flashes after breast cancer using acute tryptophan depletion.

    Get PDF
    OBJECTIVE: Among women with breast cancer, hot flashes are frequent, severe, and bothersome symptoms that can negatively impact quality of life and compromise compliance with life-saving medications (eg, tamoxifen and aromatase inhibitors). Clinicians' abilities to treat hot flashes are limited due to inadequate understanding of physiological mechanisms involved in hot flashes. Using an acute tryptophan depletion paradigm, we tested whether alterations in central serotonin levels were involved in the induction of hot flashes in women with breast cancer. METHODS: This was a within-participant, double-blind, controlled, balanced, crossover study. Twenty-seven women completed two 9-hour test days. On one test day, women ingested a concentrated amino acid drink and encapsulated amino acids (no tryptophan) according to published procedures that have been shown to have specific effects on serotonin within 4.5 to 7 hours. On the other test day, women ingested a control drink. Serial venous blood sampling and objective hot flash monitoring were used to evaluate response to each condition. RESULTS: Response to acute tryptophan depletion was variable and unexplained by use of selective serotonin reuptake inhibitors, antiestrogens, breast cancer disease and treatment variables, or genetic polymorphisms in serotonin receptor and transporter genes. Contrary to our hypothesis, hot flashes were not worsened with acute tryptophan depletion. CONCLUSIONS: Physiologically documented and self-reported hot flashes were not exacerbated by tryptophan depletion. Additional mechanistic research is needed to better understand the etiology of hot flashes

    Mefloquine pharmacokinetics and mefloquine-artesunate effectiveness in Peruvian patients with uncomplicated Plasmodium falciparum malaria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Artemisinin-based combination therapy (ACT) is recommended as a means of prolonging the effectiveness of first-line malaria treatment regimens. Different brands of mefloquine (MQ) have been reported to be non-bioequivalent; this could result in sub-therapeutic levels of mefloquine with decreased efficacy. In 2002, mefloquine-artesunate (MQ-AS) combination therapy was adopted as the first-line treatment for uncomplicated <it>Plasmodium falciparum </it>malaria in the Amazon region of Peru. Although MQ resistance has yet to be reported from the Peruvian Amazon, it has been reported from other countries in the Amazon Region. Therefore, continuous monitoring is warranted to ensure that the first-line therapy remains efficacious. This study examines the <it>in vivo </it>efficacy and pharmacokinetic parameters through Day 56 of three commercial formulations of MQ (Lariam<sup>®</sup>, Mephaquin<sup>®</sup>, and Mefloquina-AC<sup>® </sup>Farma) given in combination with artesunate.</p> <p>Methods</p> <p>Thirty-nine non-pregnant adults with <it>P. falciparum </it>mono-infection were randomly assigned to receive artesunate in combination with either (1) Lariam, (2) Mephaquin, or (3) Mefloquina AC. Patients were assessed on Day 0 (with blood samples for pharmacokinetics at 0, 2, 4, and 8 hours), 1, 2, 3, 7, and then weekly until day 56. Clinical and parasitological outcomes were based on the standardized WHO protocol.</p> <p>Whole blood mefloquine concentrations were determined by high-performance liquid chromatography and pharmacokinetic parameters were determined using non-compartmental analysis of concentration versus time data.</p> <p>Results</p> <p>By day 3, all patients had cleared parasitaemia except for one patient in the AC Farma arm; this patient cleared by day 4. No recurrences of parasitaemia were seen in any of the 34 patients. All three MQ formulations had a terminal half-life of 14–15 days and time to maximum plasma concentration of 45–52 hours. The maximal concentration (C<sub>max</sub>) and interquartile range was 2,820 ng/ml (2,614–3,108) for Lariam, 2,500 ng/ml (2,363–2,713) for Mephaquin, and 2,750 ng/ml (2,550–3,000) for Mefloquina AC Farma. The pharmacokinetics of the three formulations were generally similar, with the exception of the C<sub>max </sub>of Mephaquin which was significantly different to that of Lariam (<it>p </it>= 0.04).</p> <p>Conclusion</p> <p>All three formulations had similar pharmacokinetics; in addition, the pharmacokinetics seen in this Peruvian population were similar to reports from other ethnic groups. All patients rapidly cleared their parasitaemia with no evidence of recrudescence by Day 56. Continued surveillance is needed to ensure that patients continue to receive optimal therapy.</p

    H5N1 and 1918 Pandemic Influenza Virus Infection Results in Early and Excessive Infiltration of Macrophages and Neutrophils in the Lungs of Mice

    Get PDF
    Fatal human respiratory disease associated with the 1918 pandemic influenza virus and potentially pandemic H5N1 viruses is characterized by severe lung pathology, including pulmonary edema and extensive inflammatory infiltrate. Here, we quantified the cellular immune response to infection in the mouse lung by flow cytometry and demonstrate that mice infected with highly pathogenic (HP) H1N1 and H5N1 influenza viruses exhibit significantly high numbers of macrophages and neutrophils in the lungs compared to mice infected with low pathogenic (LP) viruses. Mice infected with the 1918 pandemic virus and a recent H5N1 human isolate show considerable similarities in overall lung cellularity, lung immune cell sub-population composition and cellular immune temporal dynamics. Interestingly, while these similarities were observed, the HP H5N1 virus consistently elicited significantly higher levels of pro-inflammatory cytokines in whole lungs and primary human macrophages, revealing a potentially critical difference in the pathogenesis of H5N1 infections. These results together show that infection with HP influenza viruses such as H5N1 and the 1918 pandemic virus leads to a rapid cell recruitment of macrophages and neutrophils into the lungs, suggesting that these cells play a role in acute lung inflammation associated with HP influenza virus infection. In addition, primary macrophages and dendritic cells were also susceptible to 1918 and H5N1 influenza virus infection in vitro and in infected mouse lung tissue
    • …
    corecore