18 research outputs found

    Thirty Years with HIV Infection—Nonprogression Is Still Puzzling: Lessons to Be Learned from Controllers and Long-Term Nonprogressors

    Get PDF
    In the early days of the HIV epidemic, it was observed that a minority of the infected patients did not progress to AIDS or death and maintained stable CD4+ cell counts. As the technique for measuring viral load became available it was evident that some of these nonprogressors in addition to preserved CD4+ cell counts had very low or even undetectable viral replication. They were therefore termed controllers, while those with viral replication were termed long-term nonprogressors (LTNPs). Genetics and virology play a role in nonprogression, but does not provide a full explanation. Therefore, host differences in the immunological response have been proposed. Moreover, the immunological response can be divided into an immune homeostasis resistant to HIV and an immune response leading to viral control. Thus, non-progression in LTNP and controllers may be due to different immunological mechanisms. Understanding the lack of disease progression and the different interactions between HIV and the immune system could ideally teach us how to develop a functional cure for HIV infection. Here we review immunological features of controllers and LTNP, highlighting differences and clinical implications

    Incomplete Immune Recovery in HIV Infection: Mechanisms, Relevance for Clinical Care, and Possible Solutions

    Get PDF
    Treatment of HIV-infected patients with highly active antiretroviral therapy (HAART) usually results in diminished viral replication, increasing CD4+ cell counts, a reversal of most immunological disturbances, and a reduction in risk of morbidity and mortality. However, approximately 20% of all HIV-infected patients do not achieve optimal immune reconstitution despite suppression of viral replication. These patients are referred to as immunological nonresponders (INRs). INRs present with severely altered immunological functions, including malfunction and diminished production of cells within lymphopoetic tissue, perturbed frequencies of immune regulators such as regulatory T cells and Th17 cells, and increased immune activation, immunosenescence, and apoptosis. Importantly, INRs have an increased risk of morbidity and mortality compared to HIV-infected patients with an optimal immune reconstitution. Additional treatment to HAART that may improve immune reconstitution has been investigated, but results thus far have proved disappointing. The reason for immunological nonresponse is incompletely understood. This paper summarizes the known and unknown factors regarding the incomplete immune reconstitution in HIV infection, including mechanisms, relevance for clinical care, and possible solutions

    Impaired platelet aggregation and rebalanced hemostasis in patients with chronic hepatitis C virus infection

    Get PDF
    Increased risk of both cardiovascular disease (CVD) and bleeding has been found in patients with chronic hepatitis C (CHC) infection, and a re-balanced hemostasis has been proposed. The aim of this study was to investigate functional whole blood coagulation and platelet function in CHC infection. The prospective study included 82 patients with CHC infection (39 with advanced liver fibrosis and 43 with no or mild liver fibrosis) and 39 healthy controls. A total of 33 patients were treated for CHC infection and achieved sustained virological response (SVR). Baseline and post-treatment blood samples were collected. Hemostasis was assessed by both standard coagulation tests and functional whole blood hemostatic assays (thromboelastograhy (TEG), and platelet aggregation (Multiplate). Patients with CHC and advanced fibrosis had impaired platelet aggregation both compared to patients with no or mild fibrosis and to healthy controls. Patients with CHC and advanced fibrosis also had lower antithrombin, platelet count, and coagulation factors II-VII-X compared to healthy controls. In contrast, TEG did not differ between groups. In treated patients achieving SVR, post-treatment platelet count was higher than pre-treatment counts (p = 0.033) and ADPtest, ASPItest, and RISTOhightest all increased post treatment (all p < 0.05). All Multiplate tests values, however, remained below those in the healthy controls. CHC-infected patients displayed evidence of rebalanced hemostasis with only partly hemostatic normalization in patients achieving SVR. The implications of rebalanced hemostasis and especially the impact on risk of CVD and bleeding warrants further studies

    No evidence of a synergistic effect of HIV infection and diabetes mellitus type 2 on fat distribution, plasma adiponectin or inflammatory markers

    No full text
    Background Altered fat distribution and chronic inflammation are found in both persons living with HIV (PLWH) and persons with diabetes mellitus type 2 (DM2) and are known risk factors for cardiovascular diseases (CVD). We aimed to investigate if a synergistic effect of HIV infection and DM2 was found on fat distribution and inflammation. Methods A cross-sectional study was performed including PLWH with HIV RNA < 200 copies/mL (18 with DM2 (HIV + DM2+), 18 without DM2 (HIV + DM2-)) and controls (19 with DM2 (controls with DM2) and 25 without DM2 (healthy controls). We measured fat distribution using dual-energy X-ray absorptiometry scan. Plasma concentrations of adiponectin, interleukin-6 (IL-6), tumor necrosis factor-alfa (TNF- α) and soluble CD14 (sCD14) was measured using snap-frozen plasma. Results HIV + DM2+ and HIV + DM2- had comparable trunk/limb fat ratio. In contrast, HIV + DM2+ had a higher trunk/ limb fat ratio than controls with DM2 and healthy controls (p = 0.013 and p < 0.001, respectively). However, HIV + DM2+ and controls with DM2 had comparable amount of trunk fat mass (kg) (p = 0.254). A lower concentration of plasma adiponectin and higher concentration of IL-6 was found in HIV + DM2+ than in HIV + DM2-(p = 0.037 and p = 0.039) and in healthy controls (p = 0.001 and p = 0.012). In contrast, plasma adiponectin and IL-6 concentrations were comparable in HIV + DM2+ and controls with DM2 (p = 0.345 and p = 0.825). Concentration of sCD14 was comparable in HIV + DM2+ and HIV + DM2–(p = 0.850), but elevated in HIV + DM2+ compared to controls with DM2 (p < 0.001) and healthy controls (p = 0.007). No statistical interactions were found between HIV infection and DM2 for any of the depending variables. Conclusion A synergistic effect of HIV and DM2 was not found for any of the outcomes. However, HIV + DM2+ had features related to both HIV infection and DM2 with a high trunk/limb ratio, high trunk fat mass, low concentration of plasma adiponectin and elevated concentrations of IL-6 and sCD14. This could contribute to elevated risk of CVD
    corecore