4 research outputs found

    Constitutive reductions in mTOR alter cell size, immune cell development, and antibody production

    No full text
    Mammalian TOR (mTOR) regulates cell growth, proliferation, and migration. Because mTOR knock-outs are embryonic lethal, we generated a viable hypomorphic mouse by neo-insertion that partially disrupts mTOR transcription and creates a potential physiologic model of mTORC1/TORC2 inhibition. Homozygous knock-in mice exhibited reductions in body, organ, and cell size. Although reductions in most organ sizes were proportional to decreased body weight, spleens were disproportionately smaller. Decreases in the total number of T cells, particularly memory cells, and reduced responses to chemokines suggested alterations in T-cell homing/homeostasis. T-cell receptor-stimulated T cells proliferated less, produced lower cytokine levels, and expressed FoxP3. Decreased neutrophil numbers were also observed in the spleen, despite normal development and migration in the bone marrow. However, B-cell effects were most pronounced, with a partial block in B-cell development in the bone marrow, altered splenic populations, and decreases in proliferation, antibody production, and migration to chemokines. Moreover, increased AKTSer473 phosphorylation was observed in activated B cells, reminiscent of cancers treated with rapamycin, and was reduced by a DNA-pk inhibitor. Thus, mTOR is required for the maturation and differentiation of multiple immune cell lineages. These mice provide a novel platform for studying the consequences of constitutively reduced mTORC1/TORC2 activity

    The landscape of new drugs in lymphoma

    No full text
    The landscape of drugs for the treatment of lymphoma has become crowded in light of the plethora of new agents, necessitating the efficient prioritization of drugs for expedited development. The number of drugs available, and the fact that many can be given for an extended period of time, has resulted in the emergence of new challenges; these include determining the optimal duration of therapy, and the need to balance costs, benefits, and the risk of late-onset toxicities. Moreover, with the increase in the number of available investigational drugs, the number of possible combinations is becoming overwhelming, which necessitates prioritization plans for the selective development of novel combination regimens. In this Review, we describe the most-promising agents in clinical development for the treatment of lymphoma, and provide expert opinion on new strategies that might enable more streamlined drug development. We also address new approaches for patient selection and for incorporating new end points into clinical trials
    corecore