5 research outputs found

    Influence of High pH on the Organization of Acetonitrile at the Silica/Water Interface Studied by Sum Frequency Generation Spectroscopy

    No full text
    The acetonitrile–water mixture is one of the most commonly used solvents in hydrophilic interaction chromatography, which contains silica as the solid phase. As such, the silica/acetonitrile–water interface plays a large role in the separation of compounds. Varying the pH is one way to influence retention times, particularly of ionizable solutes, yet the influence of high pH is often unpredictable. To determine how the structure of this interface changes with pH, we utilized the surface specific technique sum frequency generation (SFG). Previous SFG studies at neutral pH have suggested the existence of acetonitrile bilayers at the aqueous silica interface even at low acetonitrile mole fractions. Here we find that the SFG signal from 2900 to 3040 cm<sup>–1</sup> at the silica/acetonitrile–water interface increased as we adjusted the aqueous pH from near neutral to high values. This increase in signal was attributed to a greater amount of aligned water which is consistent with an increase in silica surface charge at high pH. In contrast, complementary measurements of the silica/acetonitrile–deuterium oxide interface revealed that the acetonitrile methyl mode nearly vanished as the aqueous pH was increased. This loss of methyl mode signal is indicative of a decrease in the number density of acetonitrile molecules at the interface, as orientation analysis indicates no significant change in the net orientation of the outer leaflet of the acetonitrile bilayer over the pH range studied

    Probing Silica–Kaolinite Interactions with Sum Frequency Generation Spectroscopy

    No full text
    Treating the oil sands tailings ponds is a major challenge because of the vast amounts of tailings and the need for a reliable treatment technique for releasing water and generating the highly consolidated material required for land reclamation. Treatment with chemicals such as lime (calcium (hydr)oxide) is a promising technology for tailings dewatering and consolidation, particularly at higher pH. Given that kaolinite and silica minerals are the main constituents of many oil sands, we have investigated the influence of lime and NaOH addition on the silica/aqueous kaolinite interface over the pH range 7.4–12.4 using vibrational sum frequency generation spectroscopy (SFG). With lime addition, at pH 12.0 and above we observe a complete disappearance of the vibrational features of the interfacial water molecules for planar silica in contact with an aqueous dispersion of kaolinite particles. A concurrent increase in the amount of adsorbed kaolinite on the silica surface at pH 12.0 and above is observed, shown in the increased intensity of the kaolinite SFG peak at 3694 cm–1. This suggests that the absence of water features in the SFG spectra is associated with conditions that facilitate dewatering. With NaOH addition, however, the interfacial water SF intensity is still significant even under highly alkaline conditions despite the increase in adsorbed kaolinite at high pH. To better understand the SFG observations and get a deeper insight into the chemistry of the silica/aqueous kaolinite interface, we measure the ζ-potential on the planar silica/aqueous interface and kaolinite aqueous dispersions under the same pH conditions with NaOH and lime addition

    Water Structure in the Electrical Double Layer and the Contributions to the Total Interfacial Potential at Different Surface Charge Densities

    No full text
    The electric double layer governs the processes of all charged surfaces in aqueous solutions; however, elucidating the structure of the water molecules is challenging for even the most advanced spectroscopic techniques. Here, we present the individual Stern layer and diffuse layer OH stretching spectra at the silica/water interface in the presence of NaCl over a wide pH range using a combination of vibrational sum frequency generation spectroscopy, heterodyned second harmonic generation, and streaming potential measurements. We find that the Stern layer water molecules and diffuse layer water molecules respond differently to pH changes: unlike the diffuse layer, whose water molecules remain net-oriented in one direction, water molecules in the Stern layer flip their net orientation as the solution pH is reduced from basic to acidic. We obtain an experimental estimate of the non-Gouy–Chapman (Stern) potential contribution to the total potential drop across the insulator/electrolyte interface and discuss it in the context of dipolar, quadrupolar, and higher order potential contributions that vary with the observed changes in the net orientation of water in the Stern layer. Our findings show that a purely Gouy–Chapman (Stern) view is insufficient to accurately describe the electrical double layer of aqueous interfaces

    pH-Dependent Inversion of Hofmeister Trends in the Water Structure of the Electrical Double Layer

    No full text
    Specific ion effects (SIEs) are known to influence the acid/base behavior of silica and the interfacial structure of water, yet evidence of the effect of pH on SIEs is lacking. Here broadband vibrational sum frequency generation (SFG) spectroscopy was used to study SIEs on the water structure at the electrical double layer (EDL) of silica as a function of pH and monovalent cation identity from pH 2–12 at 0.5 M salt concentration. SFG results indicate a direct Hofmeister series of cation adsorption at pH 8 (Li<sup>+</sup> < Na<sup>+</sup> < K<sup>+</sup> < Cs<sup>+</sup>), with an inversion in this series occurring at pH > 10. In addition, an inversion in SFG intensity trends also occurred at pH < 6, which was attributed to contributions from asymmetric cation hydration and EDL overcharging. The highly pH-dependent SIEs for silica/water have implications for EDL models that often assume pH-independent parameters

    Separating the pH-Dependent Behavior of Water in the Stern and Diffuse Layers with Varying Salt Concentration

    No full text
    Vibrational sum frequency generation (SFG) spectroscopy was utilized to distinguish different populations of water molecules within the electric double layer (EDL) at the silica/water interface. By systematically varying the electrolyte concentration, surface deprotonation, and SFG polarization combinations, we provide evidence of two regions of water molecules that have distinct pH-dependent behavior when the Stern layer is present (with onset between 10 and 100 mM NaCl). For example, water molecules near the surface in the Stern layer can be probed by the pss polarization combination, while other polarization combinations (ssp and ppp) predominantly probe water molecules further from the surface in the diffuse part of the electrical double layer. For the water molecules adjacent to the surface within the Stern layer, upon increasing the pH from the point-of-zero charge of silica (pH ∼2) to higher values (pH ∼12), we observe an increase in alignment consistent with a more negative surface with increasing pH. In contrast, water molecules further from the surface appear to exhibit a net flip in orientation upon increasing the pH over the same range, which we attribute to the presence of the Stern layer and possible overcharging of the EDL at lower pH. The opposing pH-dependent behavior of water in these two regions sheds new light on our understanding of the water structure within the EDL at high salt concentrations when the Stern layer is present
    corecore