4 research outputs found
Characterization of Fiber Types in Different Muscles of the Hindlimb in Female Weanling and Adult Wistar Rats
We analyzed lesser diameter and distribution of fiber types in different skeletal muscles from female Wistar rats using a histoenzymology Myofibrillar Adenosine Tri-phosphatase (mATPase) method. Fragments from muscles were frozen and processed by mATPase in different pH. Adult and weanling rat soleus muscles presented a predominance of type I fibers and larger fiber diameters. In the plantar muscle in adult rats, the type IIB fibers demonstrated greater lesser diameter while in the weanling animals, types I and IIB fibers were larger. The plantar muscle of animals of both ages was composed predominantly of the type IID fibers. The type IID fibers were observed in similar amounts in the lateral gastrocnemius and the medial gastrocnemius muscles. Type IIB fibers showed predominance and presented higher size in comparison with other types in the EDL muscle. The present study shows that data on fiber type distribution and fiber lesser diameter obtained in adult animals cannot always be applied to weanling animals of the same species. Using the mATPase, despite the difficult handling, is an important tool to determine the different characteristics of the specific fibers in the skeletal muscle tissue
MECHANICAL PROPERTIES OF GASTROCNEMIUS ELETROSTIMULATED AFTER IMMOBILIZATION
Introduction: Mechanical properties (MP) are clinically applicable tools for healthcare professionals working on the musculoskeletal system. Objectives: The aim of this study was to evaluate two protocols of neuromuscular electric stimulation (NMES) to improve MP regeneration of the myotendinous complex after segment immobilization in female rats. Materials and Methods: Fifty animals were equally distributed into five groups: Control (CG, n=10); Immobilized (IG, n=10); Immobilized and freely remobilized (IFG, n=10); Immobilized and NMES once/day (IEG1, n=10); Immobilized and MNES twice/day (IEG2, n=10). Immobilization was kept for 14 days, and remobilization was subsequently released for 10 days. NMES was applied for 10 days, post-immobilization, every morning for 10 minutes to IEG1 animals and every morning and afternoon (total 20 minutes) to the IEG2 group. After these procedures, the gastrocnemius muscle was submitted to the mechanical traction assay to evaluate stiffness, resilience, load and stretching at maximum limit MPs. Results: Immobilization reduced the MP values concerning load and stiffness (p 0.05). Results for NMES applied twice a day were less satisfactory than the ones obtained with one application or in the remobilized group (p>0.05). Conclusion: It is concluded that the gastrocnemius muscle became structurally better organized through a single NMES application and by remobilization.FAEPA (Fundacao de Apoio ao Ensino, Pesquisa e Assistencia do Hospital clas Clinicas, FMRP-USP
Propriedades mecânicas do gastrocnêmio eletroestimulado pós-imobilização Mechanical properties of gastrocnemius eletrostimulated after immobilization
INTRODUÇÃO: As propriedades mecânicas (PM) consistem num instrumento de aplicabilidade clínica para profissionais de saúde que atuam no sistema músculo-esquelético. OBJETIVOS: Avaliar dois protocolos de estimulação elétrica neuromuscular (NMES) na potencialização do restabelecimento das PM no complexo músculo-tendíneo após imobilização segmentar de ratas. MATERIAIS E MÉTODOS: Foram utilizados 50 animais distribuídos em: Controle (GC, n=10); Imobilizado (GI, n=10); Imobilizado e remobilizado livre (GIL, n=10), Imobilizado e NMES uma vez ao dia (GIE1, n=10) e Imobilizado e NMES duas vezes ao dia (GIE2, n=10). A imobilização foi realizada por 14 dias. O GIL foi liberado posteriormente por 10 dias. A NMES foi aplicada pós-imobilização por 10 dias, GIE1 aplicado pela manhã (10 minutos) e, GIE2 aplicado pela manhã e à tarde (totalizando 20 minutos). Posteriormente, o músculo gastrocnêmio foi submetido ao ensaio mecânico de tração sendo as PM de rigidez, resiliência, carga e o alongamento no limite máximo avaliadas. RESULTADOS: A imobilização reduziu os valores das propriedades de carga e rigidez (p<0,05). A NMES utilizada duas vezes ao dia determinou resultados menos satisfatórios das PM avaliadas que àqueles obtidos uma vez ao dia e no grupo remobilizado (p>0,05). CONCLUSÃO: O músculo gastrocnênio tornou-se estruturalmente mais organizado frente à aplicação unitária da NMES e na remobilização.<br>INTRODUCTION: Mechanical properties (MP) are clinically applicable tools for healthcare professionals working on the musculoskeletal system. OBJECTIVES: The aim of this study was to evaluate two protocols of neuromuscular electric stimulation (NMES) to improve MP regeneration of the myotendinous complex after segment immobilization in female rats. MATERIALS AND METHODS: Fifty animals were equally distributed into five groups: Control (CG, n=10); Immobilized (IG, n=10); Immobilized and freely remobilized (IFG, n=10); Immobilized and NMES once /day (IEG1, n=10); Immobilized and MNES twice/day (IEG2, n=10). Immobilization was kept for 14 days, and remobilization was subsequently released for 10 days. NMES was applied for 10 days, post-immobilization, every morning for 10 minutes to IEG1 animals and every morning and afternoon (total 20 minutes) to the IEG2 group. After these procedures, the gastrocnemius muscle was submitted to the mechanical traction assay to evaluate stiffness, resilience, load and stretching at maximum limit MPs. RESULTS: Immobilization reduced the MP values concerning load and stiffness (p<0.05). Results for NMES applied twice a day were less satisfactory than the ones obtained with one application or in the remobilized group (p> 0.05). CONCLUSION: It is concluded that the gastrocnemius muscle became structurally better organized through a single NMES application and by remobilization
Propriedades mecânicas do músculo gastrocnêmio de ratas, imobilizado e posteriormente submetido a diferentes protocolos de alongamento Mechanical properties of gastrocnemius muscle of female rats immobilized and posteriorly submitted to different stretching protocols
O alongamento é amplamente utilizado na prática clínica da fisioterapia e no desporto, porém, as alterações mecânicas que essa técnica gera no músculo esquelético são pouco exploradas cientificamente. Este estudo avaliou as alterações mecânicas que acometem o músculo gastrocnêmio de ratas Wistar, adultas jovens, após 14 dias de imobilização e, secundariamente, submetido a alongamento manual passivo por 10 dias consecutivos, aplicado uma ou duas vezes ao dia. Foram utilizados 50 animais, sendo 10 para cada grupo: Controle (GC); Imobilizado (GI); Imobilizado e Liberado (GIL); Imobilizado e alongado uma vez ao dia (GIA1); e Imobilizado e alongado duas vezes ao dia (GIA2). O músculo gastrocnêmio foi submetido ao ensaio mecânico de tração, onde foram avaliadas as propriedades de carga e alongamento nos limites máximo e proporcional, além de rigidez e resiliência. A imobilização reduziu os valores das propriedades mecânicas de carga no limite máximo (CLM), carga no limite proporcional (CLP), alongamento no limite máximo (ALM), rigidez e resiliência, em 44,4%, 34,4%, 27,6%, 64,4% e 54%, respectivamente, quando comparados com os valores do GC. A remobilização livre e o alongamento restauraram as propriedades de CLM, CLP, ALM, rigidez e resiliência do músculo, exceto para o GIA2, que foi incapaz de restabelecer a propriedade de ALM (31,3% menor que GC). Concluí-se, portanto que, após 14 dias de imobilização segmentar, cargas individuais de alongamento e a livre movimentação permitem restituir as propriedades mecânicas do tecido muscular.<br>Stretching is widely employed in physiotherapeutic clinical practice and in sportive activities; however, the mechanical alterations of the skeletal muscle generated by this technique are poorly scientifically investigated. This study evaluated the mechanical alterations suffered by the gastrocnemius muscle of young adult female Wistar rats, submitted to14 days of immobilization followed by passive manual stretching during 10 consecutive days once or twice a day. Fifty animals were equally distributed in five groups, Control (CG); Immobilized (IG); Immobilized and liberated (ILG); Immobilized and submitted to stretching once a day (IEG1); Immobilized and submitted to stretching twice a day (IEG2). The gastrocnemius muscle was analyzed by mechanical traction assay and the properties related to load and maximal and proportional stretching evaluated in addition to stiffness and resilience. Immobilization decreased load at maximal thresholds (MTL), load at proportional thresholds (LPT), stretch at maximal thresholds (SMT), stiffness and resilience were reduced in 44.4%, 34.4%, 27.6%, 64.4% and 54% respectively, compared to CG values. With subsequent free remobilization and stretching, all parameters were restored except for IEG2 in which SMT remained reduced in 31.3%, when compared to CG. It is concluded that after 14 days of segmental immobilization, individual stretching loads and free movements contribute to regain muscle mechanical properties