36 research outputs found

    Reduced graphene oxide decorated with Ni-Fe-Mo permalloy obtained by sputtering

    Get PDF
    This work illustrates an effective method for obtaining hybrid nanoparticles of Ni-Fe-Mo permalloy and reduced graphene oxide (rGO). The metallic nanoparticles were spread by the sputtering technique, which allowed a good dispersion of the metallic nanoparticles onto rGO substrate powder. TEM showed permalloy nanoparticles smaller than 8 nm uniformly distributed throughout rGO. Permalloy/rGO hybrid with 10.5 wt% loading of permalloy nanoparticles was calculated by TGA. RBS experiment reveals that permalloy target and the nano-particles deposited have similar composition. The interaction between permalloy and rGO was studied by FT-IR. Ni-Fe-Mo/rGO presented an electrical conductivity of 122 Scm -Âč, significantly higher than the original rGO and a magnetization hysteresis-loop coercivity of 16 Oe at room temperature. To our knowledge this is the first work in which permalloy nanoparticles are deposited onto graphene powder substrate by a physical impregnation technique

    A temporal perspective on aquatic subsidy: Bti affects emergence of Chironomidae

    Get PDF
    Emerging aquatic insects serve as one link between aquatic and adjacent riparian food webs via the flux of energy and nutrients. These insects provide high-quality subsidy to terrestrial predators. Thus, any disturbance of emergence processes may cascade to higher trophic levels and lead to effects across ecosystem boundaries. One stressor with potential impact on non-target aquatic insects, especially on non-biting midges (Diptera: Chironomidae), is the widely used mosquito control agent Bacillus thuringiensis var. israelensis (Bti). In a field experiment, we investigated emerging insect communities from Bti-treated (three applications, maximum field rate) and control floodplain pond mesocosms (FPMs) over 3.5 months for changes in their composition, diversity as well as the emergence dynamics and the individual weight of emerged aquatic insects over time. Bti treatments altered community compositions over the entire study duration – an effect mainly attributed to an earlier (∌10 days) and reduced (∌26%) peak in the emergence of Chironomidae, the dominant family (88% of collected individuals). The most reasonable explanation for this significant alteration is less resource competition caused by a decrease in chironomid larval density due to lethal effects of Bti. This is supported by the higher individual weight of Chironomidae emerging from treated FPMs (∌21%) during Bti application (April – May). A temporal shift in the emergence dynamics can cause changes in the availability of prey in linked terrestrial ecosystems. Consequently, terrestrial predators may be affected by a lack of appropriate prey leading to bottom-up and top-down effects in terrestrial food webs. This study indicates the importance of a responsible and elaborated use of Bti and additionally, highlights the need to include a temporal perspective in evaluations of stressors in aquatic-terrestrial meta-ecosystems

    A temporal perspective on aquatic subsidy: Bti affects emergence of Chironomidae

    Get PDF
    Emerging aquatic insects serve as one link between aquatic and adjacent riparian food webs via the flux of energy and nutrients. These insects provide high-quality subsidy to terrestrial predators. Thus, any disturbance of emergence processes may cascade to higher trophic levels and lead to effects across ecosystem boundaries. One stressor with potential impact on non-target aquatic insects, especially on non-biting midges (Diptera: Chironomidae), is the widely used mosquito control agent Bacillus thuringiensis var. israelensis (Bti). In a field experiment, we investigated emerging insect communities from Bti-treated (three applications, maximum field rate) and control floodplain pond mesocosms (FPMs) over 3.5 months for changes in their composition, diversity as well as the emergence dynamics and the individual weight of emerged aquatic insects over time. Bti treatments altered community compositions over the entire study duration - an effect mainly attributed to an earlier (-10 days) and reduced (-26%) peak in the emergence of Chironomidae, the dominant family (88% of collected individuals). The most reasonable explanation for this significant alteration is less resource competition caused by a decrease in chironomid larval density due to lethal effects of Bti. This is supported by the higher individual weight of Chironomidae emerging from treated FPMs (-21%) during Bti application (April - May). A temporal shift in the emergence dynamics can cause changes in the availability of prey in linked terrestrial ecosystems. Consequently, terrestrial predators may be affected by a lack of appropriate prey leading to bottom-up and topdown effects in terrestrial food webs. This study indicates the importance of a responsible and elaborated use of Bti and additionally, highlights the need to include a temporal perspective in evaluations of stressors in aquaticterrestrial meta-ecosystems

    Evaluation of Serological Markers in Alveolar Echinococcosis Emphasizing the Correlation of PET-CTI Tracer Uptake with RecEm18 and Echinococcus-Specific IgG

    No full text
    Human alveolar echinococcosis (AE), which is caused by the cestode Echinococcus (E.) multilocularis, is an epidemiologically relevant issue in modern medicine and still poses a diagnostic and therapeutic challenge. Since diagnosis mainly relies on imaging procedures and serological testing, we retrospectively and comparatively analyzed the performance of an Echinococcus IgG screening ELISA, whole serum IgE, and two specific confirmatory ELISA platforms using the defined E. multilocularis antigens Em2-Em18 (Em2+) and recombinant Em18 (recEm18). With special emphasis on the clinical usefulness of recEm18, we correlated the laboratory results with clinical characteristics and imaging findings in a large and well-characterized cohort of N = 124 AE patients, who were followed over several years after either surgical plus subsequent pharmacological treatment or pharmacotherapy alone. All patients had routinely received PET-CTI every two years. Our data reveal strong correlations for both Echinococcus IgG and recEm18 with tracer uptake in PET-CTI and parasitic lesion size and number, suggesting additional clinical usefulness of recEm18 for certain constellations only, while IgG and Em2+ still appear reasonable and sensitive screening methods for initial diagnosis of AE. With this study, we aim to contribute to further optimizing medical care of AE patients. For instance, it might be reasonable to consider the replacement of some PET-CTI follow-ups by imaging procedures with less radiation exposure or serological means alone. Further studies that clarify the correlation of serological markers with ultrasound criteria might be particularly useful, and further retrospective as well as prospective investigations are justified in this context

    Measuring Alliance and Symptom Severity in Psychotherapy Transcripts Using BERT Topic Modeling

    No full text
    Objectives: We aim to use topic modeling, an approach for discovering clusters of related words (“topics”), to predict symptom severity, therapeutic alliance, and depression diagnosis in psychotherapy transcripts, while also identifying the most important topics and overarching themes for prediction. Methods: We analyzed 552 psychotherapy transcripts from 124 patients. Using BERTopic (Grootendorst, 2022), we extracted 250 topics each for patient and therapist speech. These topics were used to predict symptom severity, alliance, and depression diagnosis with various competing machine-learning methods. We also grouped topics into themes using qualitative analysis and identified key topics and themes with eXplainable Artificial Intelligence (XAI). Results: Symptom severity could be predicted with highest accuracy by patient topics (r=.79, 95%-CI: .72, .85), whereas alliance was better predicted by therapist topics (r=.65, 95%-CI: .37, .93). A diagnosis of depression could be detected beyond chance only by therapist topics (F1=.65, 95%-CI: .54, .76). Drivers for symptom severity were themes related to health and negative experiences. Lower alliance was correlated with themes related to health, income and psychotherapy content. Discussion: This analysis shows the potential of using topic modeling in psychotherapy research allowing to predict several treatment-relevant metrics with reasonable accuracy. Further, the use of XAI allows for an analysis of the individual predictive value of topics and themes. Limitations entail heterogeneity across different topic modeling hyperparameters and a relatively small sample size

    Surface force spectroscopic point load measurements and viscoelastic modelling of the micromechanical properties of air flow sensitive hairs of a spider (Cupiennius salei)

    No full text
    The micromechanical properties of spider air flow hair sensilla (trichobothria) were characterized with nanometre resolution using surface force spectroscopy (SFS) under conditions of different constant deflection angular velocities (rad s−1) for hairs 900–950 Όm long prior to shortening for measurement purposes. In the range of angular velocities examined (4×10−4−2.6×10−1 rad s−1), the torque T (Nm) resisting hair motion and its time rate of change (Nm s−1) were found to vary with deflection velocity according to power functions. In this range of angular velocities, the motion of the hair is most accurately captured by a three-parameter solid model, which numerically describes the properties of the hair suspension. A fit of the three-parameter model (3p) to the experimental data yielded the two torsional restoring parameters, S 3p=2.91×10−11 Nm rad−1 and =2.77×10−11 Nm rad−1 and the damping parameter R 3p=1.46×10−12 Nm s rad−1. For angular velocities larger than 0.05 rad s−1, which are common under natural conditions, a more accurate angular momentum equation was found to be given by a two-parameter Kelvin solid model. For this case, the multiple regression fit yielded S 2p=4.89×10−11 Nm rad−1 and R 2p=2.83×10−14 Nm s rad−1 for the model parameters. While the two-parameter model has been used extensively in earlier work primarily at high hair angular velocities, to correctly capture the motion of the hair at both low and high angular velocities it is necessary to employ the three-parameter model. It is suggested that the viscoelastic mechanical properties of the hair suspension work to promote the phasic response behaviour of the sensilla

    High-throughput imaging of ATG9A distribution as a diagnostic functional assay for adaptor protein complex 4-associated hereditary spastic paraplegia.

    No full text
    Adaptor protein complex 4-associated hereditary spastic paraplegia is caused by biallelic loss-of-function variants in AP4B1, AP4M1, AP4E1 or AP4S1, which constitute the four subunits of this obligate complex. While the diagnosis of adaptor protein complex 4-associated hereditary spastic paraplegia relies on molecular testing, the interpretation of novel missense variants remains challenging. Here, we address this diagnostic gap by using patient-derived fibroblasts to establish a functional assay that measures the subcellular localization of ATG9A, a transmembrane protein that is sorted by adaptor protein complex 4. Using automated high-throughput microscopy, we determine the ratio of the ATG9A fluorescence in the trans-Golgi-network versus cytoplasm and ascertain that this metric meets standards for screening assays (Z'-factor robust >0.3, strictly standardized mean difference >3). The 'ATG9A ratio' is increased in fibroblasts of 18 well-characterized adaptor protein complex 4-associated hereditary spastic paraplegia patients [mean: 1.54 ± 0.13 versus 1.21 ± 0.05 (standard deviation) in controls] and receiver-operating characteristic analysis demonstrates robust diagnostic power (area under the curve: 0.85, 95% confidence interval: 0.849-0.852). Using fibroblasts from two individuals with atypical clinical features and novel biallelic missense variants of unknown significance in AP4B1, we show that our assay can reliably detect adaptor protein complex 4 function. Our findings establish the 'ATG9A ratio' as a diagnostic marker of adaptor protein complex 4-associated hereditary spastic paraplegia
    corecore