4,736 research outputs found

    High Resolution Simulations of the Plunging Region in a Pseudo-Newtonian Potential: Dependence on Numerical Resolution and Field Topology

    Get PDF
    New three dimensional magnetohydrodynamic simulations of accretion disk dynamics in a pseudo-Newtonian Paczynski-Wiita potential are presented. These have finer resolution in the inner disk than any previously reported. Finer resolution leads to increased magnetic field strength, greater accretion rate, and greater fluctuations in the accretion rate. One simulation begins with a purely poloidal magnetic field, the other with a purely toroidal field. Compared to the poloidal initial field simulation, a purely toroidal initial field takes longer to reach saturation of the magnetorotational instability and produces less turbulence and weaker magnetic field energies. For both initial field configurations, magnetic stresses continue across the marginally stable orbit; measured in units corresponding to the Shakura-Sunyaev alpha parameter, the stress grows from ~0.1 in the disk body to as much as ~10 deep in the plunging region. Matter passing the inner boundary of the simulation has ~10% greater binding energy and ~10% smaller angular momentum than it did at the marginally stable orbit. Both the mass accretion rate and the integrated stress fluctuate widely on a broad range of timescales.Comment: Accepted for publication in the Astrophysical Journal. For Web version with mpeg animations see http://www.astro.virginia.edu/VITA/papers/plunge

    Mapping the cellular electrophysiology of rat sympathetic preganglionic neurones to their roles in cardiorespiratory reflex integration:A whole cell recording study in situ

    Get PDF
    Sympathetic preganglionic neurones (SPNs) convey sympathetic activity flowing from the CNS to the periphery to reach the target organs. Although previous in vivo and in vitro cell recording studies have explored their electrophysiological characteristics, it has not been possible to relate these characteristics to their roles in cardiorespiratory reflex integration. We used the working heart–brainstem preparation to make whole cell patch clamp recordings from T3–4 SPNs (n = 98). These SPNs were classified by their distinct responses to activation of the peripheral chemoreflex, diving response and arterial baroreflex, allowing the discrimination of muscle vasoconstrictor-like (MVC(like), 39%) from cutaneous vasoconstrictor-like (CVC(like), 28%) SPNs. The MVC(like) SPNs have higher baseline firing frequencies (2.52 ± 0.33 Hz vs. CVC(like) 1.34 ± 0.17 Hz, P = 0.007). The CVC(like) have longer after-hyperpolarisations (314 ± 36 ms vs. MVC(like) 191 ± 13 ms, P < 0.001) and lower input resistance (346 ± 49  MΩ vs. MVC(like) 496 ± 41 MΩ, P < 0.05). MVC(like) firing was respiratory-modulated with peak discharge in the late inspiratory/early expiratory phase and this activity was generated by both a tonic and respiratory-modulated barrage of synaptic events that were blocked by intrathecal kynurenate. In contrast, the activity of CVC(like) SPNs was underpinned by rhythmical membrane potential oscillations suggestive of gap junctional coupling. Thus, we have related the intrinsic electrophysiological properties of two classes of SPNs in situ to their roles in cardiorespiratory reflex integration and have shown that they deploy different cellular mechanisms that are likely to influence how they integrate and shape the distinctive sympathetic outputs

    Smooth-Trajectron++: Augmenting the Trajectron++ behaviour prediction model with smooth attention

    Full text link
    Understanding traffic participants' behaviour is crucial for predicting their future trajectories, aiding in developing safe and reliable planning systems for autonomous vehicles. Integrating cognitive processes and machine learning models has shown promise in other domains but is lacking in the trajectory forecasting of multiple traffic agents in large-scale autonomous driving datasets. This work investigates the state-of-the-art trajectory forecasting model Trajectron++ which we enhance by incorporating a smoothing term in its attention module. This attention mechanism mimics human attention inspired by cognitive science research indicating limits to attention switching. We evaluate the performance of the resulting Smooth-Trajectron++ model and compare it to the original model on various benchmarks, revealing the potential of incorporating insights from human cognition into trajectory prediction models

    Modelling the vascular response to sympathetic postganglionic nerve activity

    Get PDF
    AbstractThis paper explores the influence of burst properties of the sympathetic nervous system on arterial contractility. Specifically, a mathematical model is constructed of the pathway from action potential generation in a sympathetic postganglionic neurone to contraction of an arterial smooth muscle cell. The differential equation model is a synthesis of models of the individual physiological processes, and is shown to be consistent with physiological data.The model is found to be unresponsive to tonic (regular) stimulation at typical frequencies recorded in sympathetic efferents. However, when stimulated at the same average frequency, but with repetitive respiratory-modulated burst patterns, it produces marked contractions. Moreover, the contractile force produced is found to be highly dependent on the number of spikes in each burst. In particular, when the model is driven by preganglionic spike trains recorded from wild-type and spontaneously hypertensive rats (which have increased spiking during each burst) the contractile force was found to be 10-fold greater in the hypertensive case. An explanation is provided in terms of the summative increased release of noradrenaline. Furthermore, the results suggest the marked effect that hypertensive spike trains had on smooth muscle cell tone can provide a significant contribution to the pathology of hypertension

    Experimental design of complement component 5a‐induced acute lung injury (C5a‐ALI): a role of CC‐chemokine receptor type 5 during immune activation by anaphylatoxin

    Full text link
    Excessive activation of the complement system is detrimental in acute inflammatory disorders. In this study, we analyzed the role of complement‐derived anaphylatoxins in the pathogenesis of experimental acute lung injury/acute respiratory distress syndrome (ALI/ARDS) in C57BL/6J mice. Intratracheal administration of recombinant mouse complement component (C5a) caused alveolar inflammation with abundant recruitment of Ly6‐G+CD11b+ leukocytes to the alveolar spaces and severe alveolar‐capillary barrier dysfunction (C5a‐ALI; EC50[C5a] = 20 ng/g body weight). Equimolar concentrations of C3a or desarginated C5a (C5adesArg) did not induce alveolar inflammation. The severity of C5a‐ALI was aggravated in C5‐deficient mice. Depletion of Ly6‐G+ cells and use of C5aR1‐/‐ bone marrow chimeras suggested an essential role of C5aR1+ hematopoietic cells in C5a‐ALI. Blockade of PI3K/Akt and MEK1/2 kinase pathways completely abrogated lung injury. The mechanistic description is that C5a altered the alveolar cytokine milieu and caused significant release of CC‐chemokines. Mice with genetic deficiency of CC‐chemokine receptor (CCR) type 5, the common receptor of chemokine (C‐C motif) ligand (CCL) 3, CCL4, and CCL5, displayed reduced lung damage. Moreover, treatment with a CCR5 antagonist, maraviroc, was protective against C5a‐ALI. In summary, our results suggest that the detrimental effects of C5a in this model are partly mediated through CCR5 activation downstream of C5aR1, which may be evaluated for potential therapeutic exploitation in ALI/ARDS.—Russkamp, N. F., Ruemmler, R., Roewe, J., Moore, B. B., Ward, P. A., Bosmann, M. Experimental design of complement component 5a‐induced acute lung injury (C5a‐ALI): a role of CC‐chemokine receptor type 5 during immune activation by anaphylatoxin. FASEB J. 29, 3762‐3772 (2015). www.fasebj.orgPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154372/1/fsb2029009014.pd

    Generalized Cross-Validation as a Method of Hyperparameter Search for MTGV Regularization

    Full text link
    The concept of generalized cross-validation (GCV) is applied to modified total generalized variation (MTGV) regularization. Current implementations of the MTGV regularization rely on manual (or semi-manual) hyperparameter optimization, which is both time-consuming and subject to bias. The combination of MTGV-regularization and GCV allows for a straightforward hyperparameter search during regularization. This significantly increases the efficiency of the MTGV-method, because it limits the number of hyperparameters, which have to be tested and, improves the practicality of MTGV regularization as a standard technique for inversion of NMR signals. The combined method is applied to simulated and experimental NMR data and the resulting reconstructed distributions are presented. It is shown that for all data sets studied the proposed combination of MTGV and GCV minimizes the GCV score allowing an optimal hyperparameter choice

    Global MHD Simulation of the Inner Accretion Disk in a Pseudo-Newtonian Potential

    Full text link
    We present a detailed three dimensional magnetohydrodynamic (MHD) simulation describing the inner region of a disk accreting onto a black hole. To avoid the technical complications of general relativity, the dynamics are treated in Newtonian fashion using the pseudo-Newtonian Pacz\'ynski-Wiita potential. The disk evolves due to angular momentum transport which is produced naturally from MHD turbulence generated by the magnetorotational instability. We find that the resulting stress is continuous across the marginally stable orbit, in contradiction with the widely-held assumption that the stress should go to zero there. As a consequence, the specific angular momentum of the matter accreted into the hole is smaller than the specific angular momentum at the marginally stable orbit. The disk exhibits large fluctuations in almost every quantity, both spatially and temporally. In particular, the ratio of stress to pressure (the local analog of the Shakura-Sunyaev α\alpha parameter) exhibits both systematic gradients and large fluctuations; from 102\sim 10^{-2} in the disk midplane at large radius, it rises to 10\sim 10 both at a few gas density scaleheights above the plane at large radius, and near the midplane well inside the plunging region. Driven in part by large-amplitude waves excited near the marginally stable orbit, both the mass accretion rate and the integrated stress exhibit large fluctuations whose Fourier power spectra are smooth "red" power-laws stretching over several orders of magnitude in timescale.Comment: Accepted by the Astrophysical Journal. Minor revisions in response to referee's comments, new figure 4. A web version of this paper with mpeg animations is available at http://www.astro.virginia.edu/~jh8h/pndisk/pndisk.htm
    corecore