34 research outputs found

    EpitopeViewer: a Java application for the visualization and analysis of immune epitopes in the Immune Epitope Database and Analysis Resource (IEDB)

    Get PDF
    BACKGROUND: Structural information about epitopes, particularly the three-dimensional (3D) structures of antigens in complex with immune receptors, presents a valuable source of data for immunology. This information is available in the Protein Data Bank (PDB) and provided in curated form by the Immune Epitope Database and Analysis Resource (IEDB). With continued growth in these data and the importance in understanding molecular level interactions of immunological interest there is a need for new specialized molecular visualization and analysis tools. RESULTS: The EpitopeViewer is a platform-independent Java application for the visualization of the three-dimensional structure and sequence of epitopes and analyses of their interactions with antigen-specific receptors of the immune system (antibodies, T cell receptors and MHC molecules). The viewer renders both 3D views and two-dimensional plots of intermolecular interactions between the antigen and receptor(s) by reading curated data from the IEDB and/or calculated on-the-fly from atom coordinates from the PDB. The 3D views and associated interactions can be saved for future use and publication. The EpitopeViewer can be accessed from the IEDB Web site through the quick link 'Browse Records by 3D Structure.' CONCLUSION: The EpitopeViewer is designed and been tested for use by immunologists with little or no training in molecular graphics. The EpitopeViewer can be launched from most popular Web browsers without user intervention. A Java Runtime Environment (RJE) 1.4.2 or higher is required

    Curation of complex, context-dependent immunological data

    Get PDF
    BACKGROUND: The Immune Epitope Database and Analysis Resource (IEDB) is dedicated to capturing, housing and analyzing complex immune epitope related data . DESCRIPTION: To identify and extract relevant data from the scientific literature in an efficient and accurate manner, novel processes were developed for manual and semi-automated annotation. CONCLUSION: Formalized curation strategies enable the processing of a large volume of context-dependent data, which are now available to the scientific community in an accessible and transparent format. The experiences described herein are applicable to other databases housing complex biological data and requiring a high level of curation expertise

    Limitations of Ab Initio Predictions of Peptide Binding to MHC Class II Molecules

    Get PDF
    Successful predictions of peptide MHC binding typically require a large set of binding data for the specific MHC molecule that is examined. Structure based prediction methods promise to circumvent this requirement by evaluating the physical contacts a peptide can make with an MHC molecule based on the highly conserved 3D structure of peptide:MHC complexes. While several such methods have been described before, most are not publicly available and have not been independently tested for their performance. We here implemented and evaluated three prediction methods for MHC class II molecules: statistical potentials derived from the analysis of known protein structures; energetic evaluation of different peptide snapshots in a molecular dynamics simulation; and direct analysis of contacts made in known 3D structures of peptide:MHC complexes. These methods are ab initio in that they require structural data of the MHC molecule examined, but no specific peptide:MHC binding data. Moreover, these methods retain the ability to make predictions in a sufficiently short time scale to be useful in a real world application, such as screening a whole proteome for candidate binding peptides. A rigorous evaluation of each methods prediction performance showed that these are significantly better than random, but still substantially lower than the best performing sequence based class II prediction methods available. While the approaches presented here were developed independently, we have chosen to present our results together in order to support the notion that generating structure based predictions of peptide:MHC binding without using binding data is unlikely to give satisfactory results

    Assigning new GO annotations to protein data bank sequences by combining structure and sequence homology

    No full text
    ABSTRACT Accompanying the discovery of an increasing number of proteins, there is the need to provide functional annotation that is both highly accurate and consistent. The Gene Ontology ™ (GO) provides consistent annotation in a computer readable and usable form; hence, GO annotation (GOA) has been assigned to a large number of protein sequences based on direct experimental evidence and through inference determined by sequence homology. Here we show that this annotation can be extended and corrected for cases where protein structures are available. Specifically, using the Combinatorial Extension (CE) algorithm for structure comparison, we extend the protein annotation currently provided by GOA at the European Bioinformatics Institute (EBI) to further describe the contents of the Protein Data Bank (PDB). Specific cases of biologically interesting annotations derived by this method are given. Given that the relationship between sequence, structure, and function is complicated, we explore the impact of this relationship on assigning GOA. The effect of superfolds (folds with many functions) is considered and, by compariso

    Antibody-protein interactions: benchmark datasets and prediction tools evaluation-1

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Antibody-protein interactions: benchmark datasets and prediction tools evaluation"</p><p>http://www.biomedcentral.com/1472-6807/7/64</p><p>BMC Structural Biology 2007;7():64-64.</p><p>Published online 2 Oct 2007</p><p>PMCID:PMC2174481.</p><p></p>to the length the longest chain = 63% (5/8), sequence identity = 80% (4/5)
    corecore