2,170 research outputs found

    E_11 and M Theory

    Full text link
    We argue that eleven dimensional supergravity can be described by a non-linear realisation based on the group E_{11}. This requires a formulation of eleven dimensional supergravity in which the gravitational degrees of freedom are described by two fields which are related by duality. We show the existence of such a description of gravity.Comment: 21 pages, some typos corrected and two references adde

    E_{11}, ten forms and supergravity

    Full text link
    We extend the previously given non-linear realisation of E_{11} for the decomposition appropriate to IIB supergravity to include the ten forms that were known to be present in the adjoint representation. We find precise agreement with the results on ten forms found by closing the IIB supersymmetry algebra.Comment: 14 page

    The E_{11} origin of all maximal supergravities

    Full text link
    Starting from the eleven dimensional E_{11} non-linear realisation of M-theory we compute all possible forms, that is objects with totally antisymmetrised indices, that occur in four dimensions and above as well as all the 1-forms and 2-forms in three dimensions. In any dimension D, the D-1-forms lead to maximal supergravity theories with cosmological constants and they are in precise agreement with the patterns of gauging found in any dimension using supersymmetry. The D-forms correspond to the presence of space-filling branes which are crucial for the consistency of orientifold models and have not been derived from an alternative approach, with the exception of the 10-dimensional case. It follows that the gaugings of supergravities and the spacetime-filling branes possess an eleven dimensional origin within the E_{11} formulation of M-theory. This and previous results very strongly suggest that all the fields in the adjoint representation of E_{11} have a physical interpretation.Comment: 54 page

    Duality Symmetries and G^{+++} Theories

    Full text link
    We show that the non-linear realisations of all the very extended algebras G^{+++}, except the B and C series which we do not consider, contain fields corresponding to all possible duality symmetries of the on-shell degrees of freedom of these theories. This result also holds for G_2^{+++} and we argue that the non-linear realisation of this algebra accounts precisely for the form fields present in the corresponding supersymmetric theory. We also find a simple necessary condition for the roots to belong to a G^{+++} algebra.Comment: 35 pages. v2: 2 appendices added, other minor corrections. v3: tables corrected, other minor changes, one appendix added, refs. added. Version published in Class. Quant. Gra

    E11, generalised space-time and equations of motion in four dimensions

    Full text link
    We construct the non-linear realisation of the semi-direct product of E11 and its first fundamental representation at low levels in four dimensions. We include the fields for gravity, the scalars and the gauge fields as well as the duals of these fields. The generalised space-time, upon which the fields depend, consists of the usual coordinates of four dimensional space-time and Lorentz scalar coordinates which belong to the 56-dimensional representation of E7. We demand that the equations of motion are first order in derivatives of the generalised space-time and then show that they are essentially uniquely determined by the properties of the E11 Kac-Moody algebra and its first fundamental representation. The two lowest equations correctly describe the equations of motion of the scalars and the gauge fields once one takes the fields to depend only on the usual four dimensional space-time

    E_{11} origin of Brane charges and U-duality multiplets

    Full text link
    We derive general equations which determine the decomposition of the G^{+++} multiplet of brane charges into the sub-algebras that arise when the non-linearly realised G^{+++} theory is dimensionally reduced on a torus. We apply this to calculate the low level E_8 multiplets of brane charges that arise when the E_{8}^{+++}, or E_{11}, non-linearly realised theory is dimensionally reduced to three dimensions on an eight dimensional torus. We find precise agreement with the U-duality multiplet of brane charges previously calculated, thus providing a natural eleven dimensional origin for the "mysterious" brane charges found that do not occur as central charges in the supersymmetry algebra. We also discuss the brane charges in nine dimensions and how they arise from the IIA and IIB theories.Comment: 30 pages, plain te

    Hidden Symmetries and Dirac Fermions

    Full text link
    In this paper, two things are done. First, we analyze the compatibility of Dirac fermions with the hidden duality symmetries which appear in the toroidal compactification of gravitational theories down to three spacetime dimensions. We show that the Pauli couplings to the p-forms can be adjusted, for all simple (split) groups, so that the fermions transform in a representation of the maximal compact subgroup of the duality group G in three dimensions. Second, we investigate how the Dirac fermions fit in the conjectured hidden overextended symmetry G++. We show compatibility with this symmetry up to the same level as in the pure bosonic case. We also investigate the BKL behaviour of the Einstein-Dirac-p-form systems and provide a group theoretical interpretation of the Belinskii-Khalatnikov result that the Dirac field removes chaos.Comment: 30 page

    Higher derivative type II string effective actions, automorphic forms and E11

    Full text link
    By dimensionally reducing the ten-dimensional higher derivative type IIA string theory effective action we place constraints on the automorphic forms that appear in the effective action in lower dimensions. We propose a number of properties of such automorphic forms and consider the prospects that E11 can play a role in the formulation of the higher derivative string theory effective action.Comment: 34 page

    E10 and SO(9,9) invariant supergravity

    Full text link
    We show that (massive) D=10 type IIA supergravity possesses a hidden rigid SO(9,9) symmetry and a hidden local SO(9) x SO(9) symmetry upon dimensional reduction to one (time-like) dimension. We explicitly construct the associated locally supersymmetric Lagrangian in one dimension, and show that its bosonic sector, including the mass term, can be equivalently described by a truncation of an E10/K(E10) non-linear sigma-model to the level \ell<=2 sector in a decomposition of E10 under its so(9,9) subalgebra. This decomposition is presented up to level 10, and the even and odd level sectors are identified tentatively with the Neveu--Schwarz and Ramond sectors, respectively. Further truncation to the level \ell=0 sector yields a model related to the reduction of D=10 type I supergravity. The hyperbolic Kac--Moody algebra DE10, associated to the latter, is shown to be a proper subalgebra of E10, in accord with the embedding of type I into type IIA supergravity. The corresponding decomposition of DE10 under so(9,9) is presented up to level 5.Comment: 1+39 pages LaTeX2e, 2 figures, 2 tables, extended tables obtainable by downloading sourc

    The topology of U-duality (sub-)groups

    Full text link
    We discuss the topology of the symmetry groups appearing in compactified (super-)gravity, and discuss two applications. First, we demonstrate that for 3 dimensional sigma models on a symmetric space G/H with G non-compact and H the maximal compact subgroup of G, the possibility of oxidation to a higher dimensional theory can immediately be deduced from the topology of H. Second, by comparing the actual symmetry groups appearing in maximal supergravities with the subgroups of SL(32,R) and Spin(32), we argue that these groups cannot serve as a local symmetry group for M-theory in a formulation of de Wit-Nicolai type.Comment: 18 pages, LaTeX, 1 figure, 2 table
    • …
    corecore