31 research outputs found

    Endogenous Fms-like Tyrosine Kinase-3 Ligand levels are not altered in mice after a severe burn and infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fms-like tyrosine kinase-3 ligand (Flt3L) is a hemopoietic cytokine and dendritic cell (DC) growth factor that promotes the proliferation and differentiation of progenitor cells into DCs. We have previously found that treatment of severely burned mice with recombinant Flt3L significantly enhances DC production and bacterial clearance from infected burn wounds, and increases global immune cell activation and survival in response to a burn wound infection. These significant benefits of Flt3L treatment after burn injury have prompted the question of whether or not severe burn injury induces deficits in endogenous Flt3L levels that could affect DCs and subsequent responses to infection.</p> <p>Results</p> <p>To address this, male BALB/c mice received a 30% total body surface area scald burn. Blood, spleens, and wound-draining lymph nodes were harvested at various time-points after injury. Some mice received a wound inoculation with <it>P. aeruginosa</it>. Murine Flt3L and G-CSF levels were measured by ELISA. Burn injury had no significant effect on Flt3L levels at any post-burn time-point examined compared to normal Flt3L levels in the sera, spleen, or lymph nodes. Additionally, Flt3L levels in the sera, spleen, and lymph nodes were not significantly altered when wounds were inoculated on the day of burn injury or at post-burn time points examined. Alternatively, levels of G-CSF were increased in response to burn injury and burn wound infection. Additionally, DC numbers and functions were not altered following burn injury alone. There was no significant difference between the number of DCs in the spleens of sham-injured mice and mice at 5 days after burn injury. When naïve T cells from sham-injured mice were co-cultured with DCs from either sham- or burn-injured mice, IFN-γ production was similar, however, IFN-γ levels produced by T cells harvested from burn-injured mice were significantly lower than those produced by T cells from sham mice, regardless of which DC group, sham or burn, was used in the coculture.</p> <p>Conclusion</p> <p>These data suggest that the beneficial effects of Flt3L treatments after burn injury are not due to correction of a burn-associated Flt3L deficiency but rather, are likely due to supplementary stimulation of DC production and immune responses to infection.</p

    The role of CXCL10 in the pathogenesis of experimental septic shock

    Get PDF
    Introduction: The chemokine CXCL10 is produced during infection and inflammation to activate the chemokine receptor CXCR3, an important regulator of lymphocyte trafficking and activation. The goal of this study was to assess the contributions of CXCL10 to the pathogenesis of experimental septic shock in mice. Methods: Septic shock was induced by cecal ligation and puncture (CLP) in mice resuscitated with lactated Ringer's solution and, in some cases, the broad spectrum antibiotic Primaxin. Studies were performed in CXCL10 knockout mice and mice treated with anti-CXCL10 immunoglobulin G (IgG). Endpoints included leukocyte trafficking and activation, core body temperature, plasma cytokine concentrations, bacterial clearance and survival. Results: CXCL10 was present at high concentrations in plasma and peritoneal cavity during CLP-induced septic shock. Survival was significantly improved in CXCL10 knockout (CXCL10KO) mice and mice treated with anti-CXCL10 IgG compared to controls. CXCL10KO mice and mice treated with anti-CXCL10 IgG showed attenuated hypothermia, lower concentrations of interleukin-6 (IL-6) and macrophage inhibitory protein-2 (MIP-2) in plasma and lessened natural killer (NK) cell activation compared to control mice. Compared to control mice, bacterial burden in blood and lungs was lower in CXCL10-deficient mice but not in mice treated with anti-CXCL10 IgG. Treatment of mice with anti-CXCL10 IgG plus fluids and Primaxin at 2 or 6 hours after CLP significantly improved survival compared to mice treated with non-specific IgG under the same conditions. Conclusions: CXCL10 plays a role in the pathogenesis of CLP-induced septic shock and could serve as a therapeutic target during the acute phase of septic shock

    Validity and test-retest reliability of manual goniometers for measuring passive hip range of motion in femoroacetabular impingement patients.

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aims of this study were to evaluate the construct validity (known group), concurrent validity (criterion based) and test-retest (intra-rater) reliability of manual goniometers to measure passive hip range of motion (ROM) in femoroacetabular impingement patients and healthy controls.</p> <p>Methods</p> <p>Passive hip flexion, abduction, adduction, internal and external rotation ROMs were simultaneously measured with a conventional goniometer and an electromagnetic tracking system (ETS) on two different testing sessions. A total of 15 patients and 15 sex- and age-matched healthy controls participated in the study.</p> <p>Results</p> <p>The goniometer provided greater hip ROM values compared to the ETS (range 2.0-18.9 degrees; <it>P </it>< 0.001); good concurrent validity was only achieved for hip abduction and internal rotation, with intraclass correlation coefficients (ICC) of 0.94 and 0.88, respectively. Both devices detected lower hip abduction ROM in patients compared to controls (<it>P </it>< 0.01). Test-retest reliability was good with ICCs higher 0.90, except for hip adduction (0.82-0.84). Reliability estimates did not differ between the goniometer and the ETS.</p> <p>Conclusions</p> <p>The present study suggests that goniometer-based assessments considerably overestimate hip joint ROM by measuring intersegmental angles (e.g., thigh flexion on trunk for hip flexion) rather than true hip ROM. It is likely that uncontrolled pelvic rotation and tilt due to difficulties in placing the goniometer properly and in performing the anatomically correct ROM contribute to the overrating of the arc of these motions. Nevertheless, conventional manual goniometers can be used with confidence for longitudinal assessments in the clinic.</p

    IL-15 Superagonist Expands mCD8+ T, NK and NKT Cells after Burn Injury but Fails to Improve Outcome during Burn Wound Infection.

    No full text
    BACKGROUND:Severely burned patients are highly susceptible to opportunistic infections and sepsis, owing to the loss of the protective skin barrier and immunological dysfunction. Interleukin-15 (IL-15) belongs to the IL-2 family of common gamma chain cytokines and stimulates the proliferation and activation of T (specifically memory CD8), NK and NKT cells. It has been shown to preserve T cell function and improve survival during cecal ligation and puncture (CLP)-induced sepsis in mice. However, the therapeutic efficacy of IL-15 or IL-15 superagonist (SA) during infection after burn injury has not been evaluated. Moreover, very few, if any, studies have examined, in detail, the effect of burn injury and infection on the adaptive immune system. Thus, we examined the effect of burn and sepsis on adaptive immune cell populations and the effect of IL-15 SA treatment on the host response to infection. METHODS:Mice were subjected to a 35% total body surface area burn, followed by wound infection with Pseudomonas aeruginosa. In some experiments, IL-15 SA was administered after burn injury, but before infection. Leukocytes in spleen, liver and peritoneal cavity were characterized using flow cytometry. Bacterial clearance, organ injury and survival were also assessed. RESULTS:Burn wound infection led to a significant decline in total white blood cell and lymphocyte counts and induced organ injury and sepsis. Burn injury caused decline in CD4+ and CD8+ T cells in the spleen, which was worsened by infection. IL-15 treatment inhibited this decline and significantly increased cell numbers and activation, as determined by CD69 expression, of CD4+, CD8+, B, NK and NKT cells in the spleen and liver after burn injury. However, IL-15 SA treatment failed to prevent burn wound sepsis-induced loss of CD4+, CD8+, B, NK and NKT cells and failed to improve bacterial clearance and survival. CONCLUSION:Cutaneous burn injury and infection cause significant adaptive immune dysfunction. IL-15 SA does not augment host resistance to burn wound sepsis in mice despite inducing proliferation and activation of lymphocyte subsets

    Innate Immune Memory and the Host Response to Infection

    No full text
    Unlike the adaptive immune system, the innate immune system has classically been characterized as being devoid of memory functions. However, recent research shows that innate myeloid and lymphoid cells have the ability to retain memory of prior pathogen exposure and become primed to elicit a robust, broad-spectrum response to subsequent infection. This phenomenon has been termed innate immune memory or trained immunity. Innate immune memory is induced via activation of pattern recognition receptors and the actions of cytokines on hematopoietic progenitors and stem cells in bone marrow and innate leukocytes in the periphery. The trained phenotype is induced and sustained via epigenetic modifications that reprogram transcriptional patterns and metabolism. These modifications augment antimicrobial functions, such as leukocyte expansion, chemotaxis, phagocytosis, and microbial killing, to facilitate an augmented host response to infection. Alternatively, innate immune memory may contribute to the pathogenesis of chronic diseases, such as atherosclerosis and Alzheimer\u27s disease
    corecore