6 research outputs found

    The Blood-Brain Barrier in Epilepsy

    Get PDF

    Matrix Metalloproteinase-Mediated Blood-Brain Barrier Dysfunction in Epilepsy

    Get PDF
    The blood-brain barrier is dysfunctional in epilepsy, thereby contributing to seizure genesis and resistance to antiseizure drugs. Previously, several groups reported that seizures increase brain glutamate levels, which leads to barrier dysfunction. One critical component of barrier dysfunction is brain capillary leakage. Based on our preliminary data, we hypothesized that glutamate released during seizures mediates an increase in matrix-metalloproteinase (MMP) expression and activity levels, thereby contributing to barrier leakage. To test this hypothesis, we exposed isolated brain capillaries from male Sprague Dawley rats to glutamate ex vivo and used an in vivo/ex vivo approach of isolated brain capillaries from female Wistar rats that experienced status epilepticus as an acute seizure model. We found that exposing isolated rat brain capillaries to glutamate increased MMP-2 and MMP-9 protein and activity levels, and decreased tight junction protein levels, which resulted in barrier leakage. We confirmed these findings in vivo in rats after status epilepticus and in brain capillaries from male mice lacking cytosolic phospholipase A2. Together, our data support the hypothesis that glutamate released during seizures signals an increase in MMP-2 and MMP-9 protein expression and activity levels, resulting in blood-brain barrier leakage

    Targeting prostaglandin E2 EP1 receptors prevents seizure-associated P-glycoprotein up-regulation

    No full text
    Up-regulation of the blood-brain barrier efflux transporter P-glycoprotein in central nervous system disorders results in restricted brain access and limited efficacy of therapeutic drugs. In epilepsies, seizure activity strongly triggers expression of P-glycoprotein. Here, we identified the prostaglandin E2 receptor, EP1, as a key factor in the signaling pathway that mediates seizure-induced up-regulation of P-glycoprotein at the blood-brain barrier. In the rat pilocarpine model, status epilepticus significantly increased P-glycoprotein expression by 92 to 197% in the hippocampal hilus and granule cell layer as well as the piriform cortex. The EP1 receptor antagonist 8-chlorodibenz[b,f][1,4]oxazepine-10(11H)-carboxylic acid, 2-[1-oxo-3-(4- pyridinyl)propyl]hydrazide hydrochloride (SC-51089) abolished seizure-induced P-glycoprotein up-regulation and retained its expression at the control level. The control of P-glycoprotein expression despite prolonged seizure activity suggests that EP1 receptor antagonism will also improve antiepileptic drug efficacy. Preliminary evidence for this concept has been obtained using a massive kindling paradigm during which animals received a subchronic SC-51089 treatment. After withdrawal of the EP1 receptor antagonist, a low dose of the P-glycoprotein substrate phenobarbital resulted in an anticonvulsant effect in this pretreated group, whereas the same dosage of phenobarbital did not exert a significant effect in the respective control group. In conclusion, our data demonstrate that EP1 is a key signaling factor in the regulatory pathway that drives P-glycoprotein up-regulation during seizures. These findings suggest new intriguing possibilities to prevent and interrupt P-glycoprotein overexpression in epilepsy. Future studies are necessary to further evaluate the appropriateness of the strategy to enhance the efficacy of antiepileptic drugs

    COX-2 inhibition controls P-glycoprotein expression and promotes brain delivery of phenytoin in chronic epileptic rats

    No full text
    Epileptic seizures drive expression of the blood-brain barrier efflux transporter P-glycoprotein via a glutamate/cyclooxygenase-2 mediated signalling pathway. Targeting this pathway may represent an innovative approach to control P-glycoprotein expression in the epileptic brain and to enhance brain delivery of antiepileptic drugs. Therefore, we tested the effect of specific cyclooxygenase-2 inhibition on P-glycoprotein expression in two different status epilepticus models. Moreover, the impact of a cyclooxygenase-2 inhibitor on expression of the efflux transporter and on brain delivery of an antiepileptic drug was evaluated in rats with recurrent spontaneous seizures. The highly selective cyclooxygenase-2 inhibitors SC-58236 and NS-398 both counteracted the status epilepticus-associated increase in P-glycoprotein expression in the parahippocampal cortex and the ventral hippocampus. In line with our working hypothesis, a sub-chronic 2-week treatment with SC-58236 in the chronic epileptic state kept P-glycoprotein expression at control levels. As described previously, enhanced P-glycoprotein expression in chronic epileptic rats was associated with a significant reduction in the brain penetration of the antiepileptic drug phenytoin. Importantly, the brain delivery of phenytoin was significantly enhanced by sub-chronic cyclooxygenase-2 inhibition in rats with recurrent seizures. In conclusion, the data substantiate targeting of cyclooxygenase-2 in the chronic epileptic brain as a promising strategy to control the expression levels of P-glycoprotein despite recurrent seizure activity. Cyclooxygenase-2 inhibition may therefore help to increase concentrations of antiepileptic drugs at the target sites in the epileptic brain. It needs to be further evaluated whether the approach also enhances efficac

    P‑gp Protein Expression and Transport Activity in Rodent Seizure Models and Human Epilepsy

    No full text
    A cure for epilepsy is currently not available, and seizure genesis, seizure recurrence, and resistance to antiseizure drugs remain serious clinical problems. Studies show that the blood–brain barrier is altered in animal models of epilepsy and in epileptic patients. In this regard, seizures increase expression of blood–brain barrier efflux transporters such as P-glycoprotein (P-gp), which is thought to reduce brain uptake of antiseizure drugs, and thus, contribute to antiseizure drug resistance. The goal of the current study was to assess the viability of combining <i>in vivo</i> and <i>ex vivo</i> preparations of isolated brain capillaries from animal models of seizures and epilepsy as well as from patients with epilepsy to study P-gp at the blood–brain barrier. Exposing isolated rat brain capillaries to glutamate <i>ex vivo</i> upregulated P-gp expression to levels that were similar to those in capillaries isolated from rats that had status epilepticus or chronic epilepsy. Moreover, the fold-increase in P-gp protein expression seen in animal models is consistent with the fold-increase in P-gp observed in human brain capillaries isolated from patients with epilepsy compared to age-matched control individuals. Overall, the <i>in vivo</i>/<i>ex vivo</i> approach presented here allows detailed analysis of the mechanisms underlying seizure-induced changes of P-gp expression and transport activity at the blood–brain barrier. This approach can be extended to other blood–brain barrier proteins that might contribute to drug-resistant epilepsy or other CNS disorders as well

    Longitudinal assessment of cerebral β-Amyloid deposition in mice overexpressing Swedish mutant β-Amyloid precursor protein using 18F-florbetaben PET

    No full text
    Free to read\ud \ud The progression of β-amyloid deposition in the brains of mice overexpressing Swedish mutant β-amyloid precursor protein (APP-Swe), a model of Alzheimer disease (AD), was investigated in a longitudinal PET study using the novel β-amyloid tracer <sup>18</sup>F-florbetaben. \ud \ud <strong>Methods:</strong> \ud \ud Groups of APP-Swe and age-matched wild-type (WT) mice (age range, 10–20 mo) were investigated. Dynamic emission recordings were acquired with a small-animal PET scanner during 90 min after the administration of <sup>18</sup>F-florbetaben (9 MBq, intravenously). After spatial normalization of individual PET recordings to common coordinates for mouse brain, binding potentials (BP<sub>ND</sub>) and standardized uptake value ratios (SUVRs) were calculated relative to the cerebellum. Voxelwise analyses were performed using statistical parametric mapping (SPM). Histochemical analyses and ex vivo autoradiography were ultimately performed in a subset of animals as a gold standard assessment of β-amyloid plaque load. \ud \ud <strong>Results:</strong> \ud \ud SUVRs calculated from static recordings during the interval of 30–60 min after tracer injection correlated highly with estimates of BP<sub>ND</sub> based on the entire dynamic emission recordings. <sup>18</sup>F-florbetaben binding did not significantly differ in APP-Swe mice and WT animals at 10 and 13 mo of age. At 16 mo of age, the APP-Swe mice had a significant 7.9% increase (<em>P</em> &lt; 0.01) in cortical <sup>18</sup>F-florbetaben uptake above baseline and at 20 mo there was a 16.6% increase (<em>P</em> &lt; 0.001), whereas WT mice did not show any temporal changes in tracer uptake during the interval of follow-up. Voxelwise SPM analyses revealed the first signs of increased cortical binding at 13 mo and confirmed progressive binding increases in both the frontal and the temporal cortices (<em>P</em> &lt; 0.001 uncorrected) to 20 mo. The SUVR strongly correlated with percentage plaque load (<em>R</em> = 0.95, <em>P</em> &lt; 0.001). \ud \ud <strong>Conclusion:</strong> \ud \ud In the first longitudinal PET study in an AD mouse model using the novel β-amyloid tracer <sup>18</sup>F-florbetaben, the temporal and spatial progression of amyloidogenesis in the brain of APP-Swe mice were sensitively monitored. This method should afford the means for preclinical testing of novel therapeutic approaches to the treatment of AD
    corecore