74 research outputs found

    Bridge Carbon Emissions and Driving Factors Based on a Life-Cycle Assessment Case Study: Cable-Stayed Bridge over Hun He River in Liaoning, China

    Full text link
    [EN] Due to the rapid growth of the construction industry¿s global environmental impact, especially the environmental impact contribution of bridge structures, it is necessary to study the detailed environmental impact of bridges at each stage of the full life cycle, which can provide optimal data support for sustainable development analysis. In this work, the environmental impact case of a three-tower cable-stayed bridge was analyzed through openLCA software, and more than 23,680 groups of data were analyzed using Markov chain and other research methods. It was concluded that the cable-stayed bridge contributed the most to the global warming potential value, which was mainly concentrated in the operation and maintenance phases. The conclusion shows that controlling the exhaust pollution of passing vehicles and improving the durability of building materials were the key to reducing carbon contribution and are also important directions for future research.This research was funded by the Spanish Ministry of Economy and Competitiveness, along with FEDER (Fondo Europeo de Desarrollo Regional), project grant number: BIA2017-85098-R.Zhou, Z.; Alcalá-González, J.; Yepes, V. (2020). Bridge Carbon Emissions and Driving Factors Based on a Life-Cycle Assessment Case Study: Cable-Stayed Bridge over Hun He River in Liaoning, China. International Journal of Environmental research and Public Health. 17(16):1-22. https://doi.org/10.3390/ijerph17165953S1221716The Intergovernmental Panel on Climate Change https://www.ipcc.ch/2018/10/08/summary-for-policymakers-of-ipcc-special-report-on-global-warming-of-1-5c-approved-by-governments/Sánchez-Garrido, A. J., & Yepes, V. (2020). Multi-criteria assessment of alternative sustainable structures for a self-promoted, single-family home. Journal of Cleaner Production, 258, 120556. doi:10.1016/j.jclepro.2020.120556Kong, J. S., & Frangopol, D. M. (2003). Life-Cycle Reliability-Based Maintenance Cost Optimization of Deteriorating Structures with Emphasis on Bridges. Journal of Structural Engineering, 129(6), 818-828. doi:10.1061/(asce)0733-9445(2003)129:6(818)Larsson Ivanov, O., Honfi, D., Santandrea, F., & Stripple, H. (2019). Consideration of uncertainties in LCA for infrastructure using probabilistic methods. Structure and Infrastructure Engineering, 15(6), 711-724. doi:10.1080/15732479.2019.1572200ETSI project-Stage III http://etsi.aalto.fi/Etsi3/index.htmlProBas Prozessorientierte Basisdaten für Umweltmanagementsysteme https://www.probas.umweltbundesamt.de/php/news.php?id=3Japan Environmental Management Association for Industry https://lca-forum.org/english/Ecoinvent database https://www.ecoinvent.org/database/database.htmlGarcía-Segura, T., Yepes, V., Frangopol, D. M., & Yang, D. Y. (2017). Lifetime reliability-based optimization of post-tensioned box-girder bridges. Engineering Structures, 145, 381-391. doi:10.1016/j.engstruct.2017.05.013Itoh, Y., & Kitagawa, T. (2003). Using CO2 emission quantities in bridge lifecycle analysis. Engineering Structures, 25(5), 565-577. doi:10.1016/s0141-0296(02)00167-0Heijungs, R., Huppes, G., & Guinée, J. B. (2010). Life cycle assessment and sustainability analysis of products, materials and technologies. Toward a scientific framework for sustainability life cycle analysis. Polymer Degradation and Stability, 95(3), 422-428. doi:10.1016/j.polymdegradstab.2009.11.010Penadés-Plà, V., Martí, J. V., García-Segura, T., & Yepes, V. (2017). Life-Cycle Assessment: A Comparison between Two Optimal Post-Tensioned Concrete Box-Girder Road Bridges. Sustainability, 9(10), 1864. doi:10.3390/su9101864Jutta Hildenbrand OpenLCA 1.10 http://www.openlca.org/CML-IA Characterisation Factors https://www.universiteitleiden.nl/en/research/research-output/science/cml-ia-characterisation-factorsBare, J. C., Hofstetter, P., Pennington, D. W., & de Haes, H. A. U. (2000). Midpoints versus endpoints: The sacrifices and benefits. The International Journal of Life Cycle Assessment, 5(6). doi:10.1007/bf02978665Wei, J., & Cen, K. (2019). A preliminary calculation of cement carbon dioxide in China from 1949 to 2050. Mitigation and Adaptation Strategies for Global Change, 24(8), 1343-1362. doi:10.1007/s11027-019-09848-7Du, G., Safi, M., Pettersson, L., & Karoumi, R. (2014). Life cycle assessment as a decision support tool for bridge procurement: environmental impact comparison among five bridge designs. The International Journal of Life Cycle Assessment, 19(12), 1948-1964. doi:10.1007/s11367-014-0797-zKim, T., & Tae, S. (2016). Proposal of Environmental Impact Assessment Method for Concrete in South Korea: An Application in LCA (Life Cycle Assessment). International Journal of Environmental Research and Public Health, 13(11), 1074. doi:10.3390/ijerph13111074Arbault, D., Rivière, M., Rugani, B., Benetto, E., & Tiruta-Barna, L. (2014). Integrated earth system dynamic modeling for life cycle impact assessment of ecosystem services. Science of The Total Environment, 472, 262-272. doi:10.1016/j.scitotenv.2013.10.099Ogundipe, O. M. (2016). Marshall Stability and Flow of Lime-modified Asphalt Concrete. Transportation Research Procedia, 14, 685-693. doi:10.1016/j.trpro.2016.05.333Liu, Y., Wang, Y., & Li, D. (2017). Estimation and uncertainty analysis on carbon dioxide emissions from construction phase of real highway projects in China. Journal of Cleaner Production, 144, 337-346. doi:10.1016/j.jclepro.2017.01.015Colvile, R. ., Hutchinson, E. ., Mindell, J. ., & Warren, R. . (2001). The transport sector as a source of air pollution. Atmospheric Environment, 35(9), 1537-1565. doi:10.1016/s1352-2310(00)00551-3Fushun City 2019 National Economic and Social Development Statistical Bulletin http://www.tjcn.org/tjgb/Wang, K., Tian, H., Hua, S., Zhu, C., Gao, J., Xue, Y., … Zhou, J. (2016). A comprehensive emission inventory of multiple air pollutants from iron and steel industry in China: Temporal trends and spatial variation characteristics. Science of The Total Environment, 559, 7-14. doi:10.1016/j.scitotenv.2016.03.125Hammervold, J., Reenaas, M., & Brattebø, H. (2013). Environmental Life Cycle Assessment of Bridges. Journal of Bridge Engineering, 18(2), 153-161. doi:10.1061/(asce)be.1943-5592.0000328Chen, Y., Liu, P., & Yu, Z. (2018). Effects of Environmental Factors on Concrete Carbonation Depth and Compressive Strength. Materials, 11(11), 2167. doi:10.3390/ma11112167Watson, J. G., Chow, J. C., & Fujita, E. M. (2001). Review of volatile organic compound source apportionment by chemical mass balance. Atmospheric Environment, 35(9), 1567-1584. doi:10.1016/s1352-2310(00)00461-1Martínez-Muñoz, D., Martí, J. V., & Yepes, V. (2020). Steel-Concrete Composite Bridges: Design, Life Cycle Assessment, Maintenance, and Decision-Making. Advances in Civil Engineering, 2020, 1-13. doi:10.1155/2020/8823370Kim, K. J., Yun, W. G., Cho, N., & Ha, J. (2017). Life cycle assessment based environmental impact estimation model for pre-stressed concrete beam bridge in the early design phase. Environmental Impact Assessment Review, 64, 47-56. doi:10.1016/j.eiar.2017.02.003Zhu, X., Li, H., Chen, J., & Jiang, F. (2019). Pollution control efficiency of China’s iron and steel industry: Evidence from different manufacturing processes. Journal of Cleaner Production, 240, 118184. doi:10.1016/j.jclepro.2019.118184Li, L., Sun, L., & Ning, G. (2014). Deterioration Prediction of Urban Bridges on Network Level Using Markov-Chain Model. Mathematical Problems in Engineering, 2014, 1-10. doi:10.1155/2014/72810

    Optimized Application of Sustainable Development Strategy in International Engineering Project Management

    Full text link
    [EN] The aim of this paper is to establish an international framework for sustainable project management in engineering, to make up the lack of research in this field, and to propose a scientific theoretical basis for the establishment of a new project management system. The article adopts literature review, mathematical programming algorithm and case study as the research method. The literature review applied the visual clustering research method and analyzed the results of 21-year research in this field. As a result, the project management system was found to have defects and deficiencies. A mathematical model was established to analyze the composition and elements of the optimized international project management system. The case study research selected large bridges for analysis and verified the superiority and practicability of the theoretical system. Thus, the goal of sustainable development of bridges was achieved. The value of this re-search lies in establishing a comprehensive international project management system model; truly integrating sustainable development with project management; providing new research frames and management models to promote the sustainable development of the construction industry.This research was funded by the Spanish Ministry of Science and Innovation, along with FEDER (Fondo Europeo de Desarrollo Regional), project grant number: PID2020-117056RB-I00.Zhou, Z.; Alcalá-González, J.; Yepes, V. (2021). Optimized Application of Sustainable Development Strategy in International Engineering Project Management. Mathematics. 9(14):1-30. https://doi.org/10.3390/math9141633S13091

    Environmental, Economic and Social Impact Assessment: Study of Bridges in China's Five Major Economic Regions

    Full text link
    [EN] The construction industry of all countries in the world is facing the issue of sustainable development. How to make effective and accurate decision-making on the three pillars (Environment; Economy; Social influence) is the key factor. This manuscript is based on an accurate evaluation framework and theoretical modelling. Through a comprehensive evaluation of six cable-stayed highway bridges in the entire life cycle of five provinces in China (from cradle to grave), the research shows that life cycle impact assessment (LCIA), life cycle cost assessment (LCCA), and social impact life assessment (SILA) are under the influence of multi-factor change decisions. The manuscript focused on the analysis of the natural environment over 100 years, material replacement, waste recycling, traffic density, casualty costs, community benefits and other key factors. Based on the analysis data, the close connection between high pollution levels and high cost in the maintenance stage was deeply promoted, an innovative comprehensive evaluation discrete mathematical decision-making model was established, and a reasonable interval between gross domestic product (GDP) and sustainable development was determined.This research was funded by the Spanish Ministry of Economy and Competitiveness, along with FEDER (Fondo Europeo de Desarrollo Regional), project grant number: BIA2017-85098-R.Zhou, Z.; Alcalá-González, J.; Yepes, V. (2021). Environmental, Economic and Social Impact Assessment: Study of Bridges in China's Five Major Economic Regions. International Journal of Environmental research and Public Health. 18(1):1-33. https://doi.org/10.3390/ijerph18010122S133181ISO 14044:2006/AMD 1:2017. Environmental Management-Life Cycle Assessment-Requirements and Guidelines. ISOhttps://www.iso.org/standard/72357.htmlWuni, I. Y., Shen, G. Q. P., & Osei-Kyei, R. (2019). Scientometric review of global research trends on green buildings in construction journals from 1992 to 2018. Energy and Buildings, 190, 69-85. doi:10.1016/j.enbuild.2019.02.010World Population in 2050https://www.un.org/development/desa/en/news/population/world-population-prospects-2017.htmlHuisingh, D., Zhang, Z., Moore, J. C., Qiao, Q., & Li, Q. (2015). Recent advances in carbon emissions reduction: policies, technologies, monitoring, assessment and modeling. Journal of Cleaner Production, 103, 1-12. doi:10.1016/j.jclepro.2015.04.098Zhang, X. (2014). Toward a regenerative sustainability paradigm for the built environment: from vision to reality. Journal of Cleaner Production, 65, 3-6. doi:10.1016/j.jclepro.2013.08.025Summary for Policymakers, Climate Change 2014: Mitigation of Climate Changehttps://www.buildup.eu/en/practices/publications/ipcc-2014-climate-change-2014-mitigation-climate-change-contribution-workingDong, Y. H., & Ng, S. T. (2015). A social life cycle assessment model for building construction in Hong Kong. The International Journal of Life Cycle Assessment, 20(8), 1166-1180. doi:10.1007/s11367-015-0908-5Hellweg, S., & Milà i Canals, L. (2014). Emerging approaches, challenges and opportunities in life cycle assessment. Science, 344(6188), 1109-1113. doi:10.1126/science.1248361Hansen, J., Sato, M., Kharecha, P., Beerling, D., Berner, R., Masson-Delmotte, V., … Zachos, J. C. (2008). Target Atmospheric CO: Where Should Humanity Aim? The Open Atmospheric Science Journal, 2(1), 217-231. doi:10.2174/1874282300802010217WMO Statement on the State of the Global Climate in 2016https://library.wmo.int/doc_num.php?explnum_id=3414Lin, B., & Liu, H. (2015). CO2 emissions of China’s commercial and residential buildings: Evidence and reduction policy. Building and Environment, 92, 418-431. doi:10.1016/j.buildenv.2015.05.020Kim, T., & Tae, S. (2016). Proposal of Environmental Impact Assessment Method for Concrete in South Korea: An Application in LCA (Life Cycle Assessment). International Journal of Environmental Research and Public Health, 13(11), 1074. doi:10.3390/ijerph13111074OpenLCA 1.10http://www.openlca.org/openlca/ISO,14044:2006/AMD 2:2020, Environmental Management-Life Cycle Assessment-Requirements and Guidelines. ISOhttps://www.iso.org/standard/76122.htmlNavarro, I. J., Yepes, V., Martí, J. V., & González-Vidosa, F. (2018). Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks. Journal of Cleaner Production, 196, 698-713. doi:10.1016/j.jclepro.2018.06.110O’Born, R. (2018). Life cycle assessment of large scale timber bridges: A case study from the world’s longest timber bridge design in Norway. Transportation Research Part D: Transport and Environment, 59, 301-312. doi:10.1016/j.trd.2018.01.018Milani, C. J., & Kripka, M. (2019). Evaluation of short span bridge projects with a focus on sustainability. Structure and Infrastructure Engineering, 16(2), 367-380. doi:10.1080/15732479.2019.1662815Trunzo, G., Moretti, L., & D’Andrea, A. (2019). Life Cycle Analysis of Road Construction and Use. Sustainability, 11(2), 377. doi:10.3390/su11020377Li, H., Deng, Q., Zhang, J., Xia, B., & Skitmore, M. (2019). Assessing the life cycle CO2 emissions of reinforced concrete structures: Four cases from China. Journal of Cleaner Production, 210, 1496-1506. doi:10.1016/j.jclepro.2018.11.102Frangopol, D. M., Dong, Y., & Sabatino, S. (2017). Bridge life-cycle performance and cost: analysis, prediction, optimisation and decision-making. Structure and Infrastructure Engineering, 13(10), 1239-1257. doi:10.1080/15732479.2016.1267772Goh, K. C., Goh, H. H., & Chong, H.-Y. (2019). Integration Model of Fuzzy AHP and Life-Cycle Cost Analysis for Evaluating Highway Infrastructure Investments. Journal of Infrastructure Systems, 25(1), 04018045. doi:10.1061/(asce)is.1943-555x.0000473Heidari, M. R., Heravi, G., & Esmaeeli, A. N. (2020). Integrating life-cycle assessment and life-cycle cost analysis to select sustainable pavement: A probabilistic model using managerial flexibilities. Journal of Cleaner Production, 254, 120046. doi:10.1016/j.jclepro.2020.120046Wang, Z., Yang, D. Y., Frangopol, D. M., & Jin, W. (2019). Inclusion of environmental impacts in life-cycle cost analysis of bridge structures. Sustainable and Resilient Infrastructure, 5(4), 252-267. doi:10.1080/23789689.2018.1542212Cadenazzi, T., Dotelli, G., Rossini, M., Nolan, S., & Nanni, A. (2019). Life-Cycle Cost and Life-Cycle Assessment Analysis at the Design Stage of a Fiber-Reinforced Polymer-Reinforced Concrete Bridge in Florida. Advances in Civil Engineering Materials, 8(2), 20180113. doi:10.1520/acem20180113Social Impact Assessment (SIA)https://www.iucn.org/sites/dev/files/iucn_esms_sia_guidance_note.pdfZhang, A., Zhong, R. Y., Farooque, M., Kang, K., & Venkatesh, V. G. (2020). Blockchain-based life cycle assessment: An implementation framework and system architecture. Resources, Conservation and Recycling, 152, 104512. doi:10.1016/j.resconrec.2019.104512Parent, J., Cucuzzella, C., & Revéret, J.-P. (2010). Impact assessment in SLCA: sorting the sLCIA methods according to their outcomes. The International Journal of Life Cycle Assessment, 15(2), 164-171. doi:10.1007/s11367-009-0146-9Vanclay, F. (2019). Reflections on Social Impact Assessment in the 21st century. Impact Assessment and Project Appraisal, 38(2), 126-131. doi:10.1080/14615517.2019.1685807Zamarrón-Mieza, I., Yepes, V., & Moreno-Jiménez, J. M. (2017). A systematic review of application of multi-criteria decision analysis for aging-dam management. Journal of Cleaner Production, 147, 217-230. doi:10.1016/j.jclepro.2017.01.092Parsons, R. (2019). Forces for change in social impact assessment. Impact Assessment and Project Appraisal, 38(4), 278-286. doi:10.1080/14615517.2019.1692585Vanclay, F. (2003). International Principles for Social Impact Assessment: their evolution. Impact Assessment and Project Appraisal, 21(1), 3-4. doi:10.3152/147154603781766464Domínguez-Gómez, J. A. (2016). Four conceptual issues to consider in integrating social and environmental factors in risk and impact assessments. Environmental Impact Assessment Review, 56, 113-119. doi:10.1016/j.eiar.2015.09.009Fischer, T. B., Jha-Thakur, U., Fawcett, P., Clement, S., Hayes, S., & Nowacki, J. (2017). Consideration of urban green space in impact assessments for health. Impact Assessment and Project Appraisal, 36(1), 32-44. doi:10.1080/14615517.2017.1364021Balasbaneh, A. T., & Marsono, A. K. B. (2020). Applying multi-criteria decision-making on alternatives for earth-retaining walls: LCA, LCC, and S-LCA. The International Journal of Life Cycle Assessment, 25(11), 2140-2153. doi:10.1007/s11367-020-01825-6Balasbaneh, A. T., Marsono, A. K. B., & Khaleghi, S. J. (2018). Sustainability choice of different hybrid timber structure for low medium cost single-story residential building: Environmental, economic and social assessment. Journal of Building Engineering, 20, 235-247. doi:10.1016/j.jobe.2018.07.006Penadés-Plà, V., Martínez-Muñoz, D., García-Segura, T., Navarro, I. J., & Yepes, V. (2020). Environmental and Social Impact Assessment of Optimized Post-Tensioned Concrete Road Bridges. Sustainability, 12(10), 4265. doi:10.3390/su12104265Ali, M. S., Aslam, M. S., & Mirza, M. S. (2015). A sustainability assessment framework for bridges – a case study: Victoria and Champlain Bridges, Montreal. Structure and Infrastructure Engineering, 1-14. doi:10.1080/15732479.2015.1120754Kloepffer, W. (2008). Life cycle sustainability assessment of products. The International Journal of Life Cycle Assessment, 13(2), 89-95. doi:10.1065/lca2008.02.376Hu, M. (2019). Building impact assessment—A combined life cycle assessment and multi-criteria decision analysis framework. Resources, Conservation and Recycling, 150, 104410. doi:10.1016/j.resconrec.2019.104410Ecoinventhttps://www.ecoinvent.org/database/database.htmlThe Regional Catalan Governmenthttps://en.itec.cat/database/Psilca Greendatebasehttps://psilca.net/Ortiz, O., Castells, F., & Sonnemann, G. (2009). Sustainability in the construction industry: A review of recent developments based on LCA. Construction and Building Materials, 23(1), 28-39. doi:10.1016/j.conbuildmat.2007.11.012Asdrubali, F., Baldassarri, C., & Fthenakis, V. (2013). Life cycle analysis in the construction sector: Guiding the optimization of conventional Italian buildings. Energy and Buildings, 64, 73-89. doi:10.1016/j.enbuild.2013.04.018Ramesh, T., Prakash, R., & Shukla, K. K. (2010). Life cycle energy analysis of buildings: An overview. Energy and Buildings, 42(10), 1592-1600. doi:10.1016/j.enbuild.2010.05.007Cabeza, L. F., Rincón, L., Vilariño, V., Pérez, G., & Castell, A. (2014). Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review. Renewable and Sustainable Energy Reviews, 29, 394-416. doi:10.1016/j.rser.2013.08.037Chau, C. K., Leung, T. M., & Ng, W. Y. (2015). A review on Life Cycle Assessment, Life Cycle Energy Assessment and Life Cycle Carbon Emissions Assessment on buildings. Applied Energy, 143, 395-413. doi:10.1016/j.apenergy.2015.01.023Baker, L. (2018). Of embodied emissions and inequality: Rethinking energy consumption. Energy Research & Social Science, 36, 52-60. doi:10.1016/j.erss.2017.09.027Chen, L., Pelton, R. E. O., & Smith, T. M. (2016). Comparative life cycle assessment of fossil and bio-based polyethylene terephthalate (PET) bottles. Journal of Cleaner Production, 137, 667-676. doi:10.1016/j.jclepro.2016.07.094Walker, S., & Rothman, R. (2020). Life cycle assessment of bio-based and fossil-based plastic: A review. Journal of Cleaner Production, 261, 121158. doi:10.1016/j.jclepro.2020.121158Recipehttps://www.researchgate.net/publication/230770853_Recipe_2008New Version ReCiPe 2016 to Determine Environmental Impact|RIVMhttps://www.rivm.nl/en/news/new-version-recipe-2016-to-determine-environmental-impactPenadés-Plà, V., Martí, J. V., García-Segura, T., & Yepes, V. (2017). Life-Cycle Assessment: A Comparison between Two Optimal Post-Tensioned Concrete Box-Girder Road Bridges. Sustainability, 9(10), 1864. doi:10.3390/su9101864Zhou, Z., Alcalá, J., & Yepes, V. (2020). Bridge Carbon Emissions and Driving Factors Based on a Life-Cycle Assessment Case Study: Cable-Stayed Bridge over Hun He River in Liaoning, China. International Journal of Environmental Research and Public Health, 17(16), 5953. doi:10.3390/ijerph17165953SimaProhttps://simapro.com/about/Lee, K.-M., Cho, H.-N., & Cha, C.-J. (2006). Life-cycle cost-effective optimum design of steel bridges considering environmental stressors. Engineering Structures, 28(9), 1252-1265. doi:10.1016/j.engstruct.2005.12.008Navarro, I. J., Penadés-Plà, V., Martínez-Muñoz, D., Rempling, R., & Yepes, V. (2020). LIFE CYCLE SUSTAINABILITY ASSESSMENT FOR MULTI-CRITERIA DECISION MAKING IN BRIDGE DESIGN: A REVIEW. JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT, 26(7), 690-704. doi:10.3846/jcem.2020.13599García-Segura, T., Penadés-Plà, V., & Yepes, V. (2018). Sustainable bridge design by metamodel-assisted multi-objective optimization and decision-making under uncertainty. Journal of Cleaner Production, 202, 904-915. doi:10.1016/j.jclepro.2018.08.177Jang, B., & Mohammadi, J. (2019). Impact of fatigue damage from overloads on bridge life-cycle cost analysis. Bridge Structures, 15(4), 181-186. doi:10.3233/brs-190153Matos, J., Solgaard, A., Santos, C., Silva, M. S., Linneberg, P., Strauss, A., … Akiyama, M. (2017). Life Cycle Cost, As a Tool for Decision Making on Concrete Infrastructures. High Tech Concrete: Where Technology and Engineering Meet, 1832-1839. doi:10.1007/978-3-319-59471-2_210Edited by the Ministry of Construction, National Development and Reform Commission, 2002. Engineering Survey and Design Charging Standardshttps://wenku.baidu.com/view/3fa74a62effdc8d376eeaeaad1f34693daef1088.htmlRossi, B., Marquart, S., & Rossi, G. (2017). Comparative life cycle cost assessment of painted and hot-dip galvanized bridges. Journal of Environmental Management, 197, 41-49. doi:10.1016/j.jenvman.2017.03.022Wang, H., Schandl, H., Wang, X., Ma, F., Yue, Q., Wang, G., … Zheng, R. (2020). Measuring progress of China’s circular economy. Resources, Conservation and Recycling, 163, 105070. doi:10.1016/j.resconrec.2020.105070Wang, D., Liu, Q., Ma, L., Zhang, Y., & Cong, H. (2019). Road traffic accident severity analysis: A census-based study in China. Journal of Safety Research, 70, 135-147. doi:10.1016/j.jsr.2019.06.002Van der Vlegel, M., Haagsma, J. A., de Munter, L., de Jongh, M. A. C., & Polinder, S. (2020). Health Care and Productivity Costs of Non-Fatal Traffic Injuries: A Comparison of Road User Types. International Journal of Environmental Research and Public Health, 17(7), 2217. doi:10.3390/ijerph17072217Al-Rukaibi, F., AlKheder, S., AlOtaibi, N., & Almutairi, M. (2019). Traffic crashes cost estimation in Kuwait. International Journal of Crashworthiness, 25(2), 203-212. doi:10.1080/13588265.2019.1567966Jiménez, J. R., Ayuso, J., Agrela, F., López, M., & Galvín, A. P. (2012). Utilisation of unbound recycled aggregates from selected CDW in unpaved rural roads. Resources, Conservation and Recycling, 58, 88-97. doi:10.1016/j.resconrec.2011.10.012Tavira, J., Jiménez, J. R., Ayuso, J., Sierra, M. J., & Ledesma, E. F. (2018). Functional and structural parameters of a paved road section constructed with mixed recycled aggregates from non-selected construction and demolition waste with excavation soil. Construction and Building Materials, 164, 57-69. doi:10.1016/j.conbuildmat.2017.12.195Sangiorgi, C., Lantieri, C., & Dondi, G. (2014). Construction and demolition waste recycling: an application for road construction. International Journal of Pavement Engineering, 16(6), 530-537. doi:10.1080/10298436.2014.943134Prenzel, P. V., & Vanclay, F. (2014). How social impact assessment can contribute to conflict management. Environmental Impact Assessment Review, 45, 30-37. doi:10.1016/j.eiar.2013.11.003Vanclay, F. (2003). International Principles For Social Impact Assessment. Impact Assessment and Project Appraisal, 21(1), 5-12. doi:10.3152/147154603781766491Esteves, A. M., Franks, D., & Vanclay, F. (2012). Social impact assessment: the state of the art. Impact Assessment and Project Appraisal, 30(1), 34-42. doi:10.1080/14615517.2012.660356Sierra, L. A., Pellicer, E., & Yepes, V. (2017). Method for estimating the social sustainability of infrastructure projects. Environmental Impact Assessment Review, 65, 41-53. doi:10.1016/j.eiar.2017.02.004Navarro, I. J., Yepes, V., & Martí, J. V. (2018). Social life cycle assessment of concrete bridge decks exposed to aggressive environments. Environmental Impact Assessment Review, 72, 50-63. doi:10.1016/j.eiar.2018.05.003Shab-Homehttp://www.socialhotspot.org/PSILCA-A Product Social Impact Life Cycle Assessment Database Database Version 1.0https://www.openlca.org/wp-content/uploads/2016/08/PSILCA_documentation_v1.1.pdfGeographical Division of China-Wikiwand. Wikihttps://www.wikiwand.com/en/Geography_of_ChinaList of New Cities in China-Wikiwandhttps://m.sohu.com/n/486287408/Dargay, J., Gately, D., & Sommer, M. (2007). Vehicle Ownership and Income Growth, Worldwide: 1960-2030. The Energy Journal, 28(4). doi:10.5547/issn0195-6574-ej-vol28-no4-7Wu, T., Zhang, M., & Ou, X. (2014). Analysis of Future Vehicle Energy Demand in China Based on a Gompertz Function Method and Computable General Equilibrium Model. Energies, 7(11), 7454-7482. doi:10.3390/en7117454Shi, Y., Guo, S., & Sun, P. (2017). The role of infrastructure in China’s regional economic growth. Journal of Asian Economics, 49, 26-41. doi:10.1016/j.asieco.2017.02.004International Association for Impact Assessment Purpose and Intended Readershiphttps://www.socialimpactassessment.com/documents/IAIA%202015%20Social%20Impact%20Assessment%20guidance%20document.pdfAppiah-Opoku, S. (2015). Land access and resettlement: a guide to best practice, by Gerry Reddy, Eddie Smyth, and Michael Steyn. Impact Assessment and Project Appraisal, 33(4), 290-290. doi:10.1080/14615517.2015.1069667Virtual de Publicaciones del M. de. 2010. Code on Structural Concrete (EHE-08) Articles and Annexeshttp://asidac.es/asidac-en/wp-content/uploads/2016/07/EHE-ENG.pdfSuzuki, S., & Nijkamp, P. (2016). An evaluation of energy-environment-economic efficiency for EU, APEC and ASEAN countries: Design of a Target-Oriented DFM model with fixed factors in Data Envelopment Analysis. Energy Policy, 88, 100-112. doi:10.1016/j.enpol.2015.10.00

    Research on Sustainable Development of the Regional Construction Industry Based on Entropy Theory

    Full text link
    [EN] Human beings are now facing the increasingly urgent problem of global ecological environment pollution. To verify the scientific nature of environmental governance by governments of various countries, researchers need to provide a scientific basis and practical support for governments to adjust and formulate new policies and regulatory measures at any time through data analysis. This paper applies visual literature, aggregate analysis, engineering data programming, advanced mathematical science algorithms, and innovation entropy theory, and through this study obtains sustainable impact data from eight Chinese provinces in the 21st century, including environmental, economic, and social impacts. The results show that China¿s sustainable data should grow from 2021 to about 2044. After 2045, it will be stable, and there will be negative growth in a short period. The overall life cycle assessment (LCA) and social impact assessment (SIA) continue to remain in the positive range. There will be no negative growth in aggregate data and zero or negative emissions before 2108. The final research data are accurately presented in the form of annual emissions, which provide a scientific and theoretical basis for the government to formulate medium- and long-term ecological regulations and plans.This research was funded by the financial support of the Spanish Ministry of Science and Innovation (project: PID2020-117056RB-100), along with FEDER fundingZhou, Z.; Alcalá-González, J.; Yepes, V. (2022). Research on Sustainable Development of the Regional Construction Industry Based on Entropy Theory. Sustainability. 14(24):1-23. https://doi.org/10.3390/su142416645123142

    Optimización heurística económica de tableros de puentes losa pretensados

    Full text link
    Los tableros losa de hormigón pretensado son una tipología habitualmente empleada en España para resolver estructuras de pasos superiores. Su optimización presenta un gran interés para conseguir diseños más económicos, que permitan un mayor aprovechamiento de los recursos que requieren. Las contribuciones a esta materia son escasas y han adolecido de un carácter extemadamente teórico que ha dificultado su aplicación por parte de ingenieros proyectistas. El objetivo de este trabajo ha sido el de aplicar técnicas de optimización estructural a esta tipología. Se han empleado técnicas metaheurísticas, puesto que permiten plantear el problema de un modo más complejo, aprovechando par una definición completa de tablero y de todos sus componentes, al tiempo que ha permitido imponer todas las comprobaciones que la normativa exige para este tipo de estructuras. Para definir las características del problema ha sido necesario distinguir entre los tableros aligerados y los macizos, dado que ha resultado imposible considerar a uno un caso particular del otro. Se ha implementado un programa informático que incluye las siguientes funciones: generación aletatoria de un tablero, comprobación automática de un tablero, evaluación de su coste a partir de las mediciones completas de todos sus componentes y tres algoritmos de optimización heurística implementados basados en tres metaheurísticas, pertenecientes a los denominados algoritmos de mejora local. Para la calibración de los algoritmos se han efectuado pruebas con diferentes parametrizaciones. La comparación de los resultados ha permitido descartar el algoritmo OBA pormostrar una menor eficacia para las parametrizaciones ensayadas. Los algoritmos SA y TA, por el contrario, muestran resultados muy similares, por lo que han efectuado pruebas de inferencia estadística consistentes en diferentes test de hipótesis. Los resultados no han sido capaces de determinar la heurística más eficaz de las dos.Alcalá González, J. (2010). Optimización heurística económica de tableros de puentes losa pretensados [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/7441Palanci

    Optimal Design of Sustainable Reinforced Concrete Precast Hinged Frames

    Full text link
    [EN] Sustainable development requires improvements in the use of natural resources. The main objective of the present study was to optimize the use of materials in the construction of reinforced concrete precast hinged frames. Proprietary software was developed in the Python programming language. This allowed the structure¿s calculation, verification and optimization through the application of metaheuristic techniques. The final cost is a direct representation of the use of materials. Thus, three algorithms were applied to solve the economic optimization of the frame. By applying simulated annealing, threshold accepting and old bachelor¿s acceptance algorithms, sustainable, non-traditional designs were achieved. These make optimal use of natural resources while maintaining a highly restricted final cost. In order to evaluate the environmental impact improvement, the carbon-dioxide-associated emissions were studied and compared with a reference cast-in-place reinforced concrete frame. The results showed designs with reduced upper slab and lateral wall depth and dense passive reinforcement. These were able to reduce up to 24% of the final cost of the structure as well as over 30% of the associated emissions.The authors acknowledge the financial support of Grant PID2020-117056RB-I00 funded by MCIN/AEI/10.13039/501100011033 and by "ERDF A way of making Europe"Ruiz-Vélez, A.; Alcalá-González, J.; Yepes, V. (2022). Optimal Design of Sustainable Reinforced Concrete Precast Hinged Frames. Materials. 16(1):1-23. https://doi.org/10.3390/ma1601020412316

    Life Cycle Assessment of Bridges Using Bayesian Networks and Fuzzy Mathematics

    Full text link
    [EN] At present, reducing the impact of the construction industry on the environment is the key to achieving sustainable development. Countries all over the world are using software systems for bridge environmental impact assessment. However, due to the complexity and discreteness of environmental factors in the construction industry, they are difficult to update and determine quickly, and there is a phenomenon of data missing in the database. Most of the lost data are optimized by Monte Carlo simulation, which greatly reduces the reliability and accuracy of the research results. This paper uses Bayesian advanced fuzzy mathematics theory to solve this problem. In the research, a Bayesian fuzzy mathematics evaluation and a multi-level sensitivity priority discrimination model are established, and the weights and membership degrees of influencing factors were defined to achieve comprehensive coverage of influencing factors. With the support of theoretical modelling, software analysis and fuzzy mathematics theory are used to comprehensively evaluate all the influencing factors of the five influencing stages in the entire life cycle of the bridge structure. The results show that the material manufacturing, maintenance, and operation of the bridge still produce environmental pollution; the main source of the emissions exceeds 53% of the total emissions. The effective impact factor reaches 3.01. At the end of the article, a big data sensitivity model was established. Through big data innovation and optimization analysis, traffic pollution emissions were reduced by 330 tonnes. Modeling of the comprehensive research model; application; clearly confirms the effectiveness and practicality of the Bayesian network fuzzy number comprehensive evaluation model in dealing with uncertain factors in the evaluation of the sustainable development of the construction industry. The research results have made important contributions to the realization of the sustainable development goals of the construction industry.This research was funded by the Spanish Ministry of Economy and Competitiveness, along with FEDER (Fondo Europeo de Desarrollo Regional), project grant number: BIA2017-85098-RZhou, Z.; Alcalá-González, J.; Kripka, M.; Yepes, V. (2021). Life Cycle Assessment of Bridges Using Bayesian Networks and Fuzzy Mathematics. Applied Sciences. 11(11):1-31. https://doi.org/10.3390/app11114916S131111

    La información contable cualitativa: especial mención al Reporting Integrado

    Get PDF
    La información contable cualitativa juega un papel clave a la hora de comunicar el valor de las organizaciones. A lo largo de los años esta información se ha venido presentando de forma diferente, pasando de breves comentarios hasta varios informes muy detallados como existe en la actualidad. Debido a la grave crisis económica que hemos sufrido esta forma de informar se ha vuelto insuficiente, es necesario en este punto reorganizar esta información para cumplir con su objetivo. Es el Reporting Integrado la herramienta que unifica todos estos informes que existían, integrando la información cualitativa con la cuantitativa e informando acerca de todo el proceso de creación de valor. En concreto en el Ibex 35 ya se ha empezado a aplicar esta nueva forma de informar, si bien es de forma voluntaria. Cumpliendo en gran parte con los contenidos establecidos para un correcto informe integrado.Universidad de Sevilla. Doble Grado en Derecho y en Finanzas y Contabilida

    CO2-Optimization of Post-Tensioned Concrete Slab-Bridge Decks Using Surrogate Modeling

    Full text link
    [EN] This paper deals with optimizing embedded carbon dioxide (CO2) emissions using surrogate modeling, whether it is the deck of a post-tensioned cast-in-place concrete slab bridge or any other design structure. The main contribution of this proposal is that it allows optimizing structures methodically and sequentially. The approach presents two sequential phases of optimization, the first one of diversification and the second one of intensification of the search for optimums. Finally, with the amount of CO2 emissions and the differentiating characteristics of each design, a heuristic optimization based on a Kriging metamodel is performed. An optimized solution with lower emissions than the analyzed sample is obtained. If CO2 emissions were to be reduced, design recommendations would be to use slendernesses as high as possible, in the range of 1/30, which implies a more significant amount of passive reinforcement. This increase in passive reinforcement is compensated by reducing the measurement of concrete and active reinforcement. Another important conclusion is that reducing emissions is related to cost savings. Furthermore, it has been corroborated that for a cost increase of less than 1%, decreases in emissions emitted into the atmosphere of more than 2% can be achieved.Grant PID2020-117056RB-I00 funded by MCIN/AEI/10.13039/501100011033 and by "ERDF A way of making Europe".Yepes-Bellver, L.; Brun-Izquierdo, A.; Alcalá-González, J.; Yepes, V. (2022). CO2-Optimization of Post-Tensioned Concrete Slab-Bridge Decks Using Surrogate Modeling. Materials. 15(14):1-15. https://doi.org/10.3390/ma15144776115151

    Control y gestión de redes inalámbricas en entornos virtuales distribuidos

    Get PDF
    Desde hace ya varios años las redes inalámbricas forman parte de nuestra vida diaria y no podríamos concebir sin ellas, la sociedad de la información en la que hoy vivimos y que ha revolucionado la forma en la que interactuamos entre nosotros.Mientras los grandes operadores nos ofrecen conexión a Internet móvil mediante redes 4G o la recién estrenada 5G, hoy en día tanto en hogares, como en oficinas, colegios, universidades y lugares públicos, las redes Wi-Fi son las que predominan y lo seguirán haciendo durante muchos años; no sólo para conectar todos nuestros dispositivos móviles, sino para dar soporte a la revolución de los objetos conectados, también conocida como la industria del IoT o el "Internet de las cosas".Con el reciente estándar Wi-Fi 6 ya existente (pero que apenas ha comenzado a alcanzarnos), y con las miras ya puestas en el futuro Wi-Fi 7 que permitirá velocidades teóricas de hasta 30 Gbps, se vaticina un interesante y prometedor futuro para esta tecnología.No obstante, el uso de redes Wi-Fi plantea problemas de movilidad entre puntos de acceso inalámbricos, que pueden degradar considerablemente la experiencia de usuario. Para optimizar y resolver estos problemas, se han desarrollado mecanismos que ayudan a rebajar estos inconvenientes; centrándonos concretamente en el proyecto que da origen a este trabajo denominado LVAP (Light Virtual Access Points), el cual se fundamenta en redes SDWN (Software-Defined Wireless Network).El uso masivo de las redes intensifica también la necesidad de escalar y gestionar la infraestructura de red de forma flexible y dinámica, permitiendo establecer enrutamientos de tráfico basados en las capacidades de la red, balanceando la carga entre las diferentes rutas disponibles y, en definitiva, mejorando la calidad del servicio ofrecido. Mediante la incorporación de una infraestructura SDN, se permite obtener este control total de la red y tener la capacidad de administrar todo el tráfico, siendo la solución idónea para los problemas citados anteriormente.Este proyecto tiene como objetivo analizar múltiples alternativas para proporcionar y documentar un escenario óptimo sobre el que se pueda, de forma flexible y sencilla, portar la compleja infraestructura de puntos de acceso inalámbricos del Proyecto LVAP, así como integrar las capacidades de las redes definidas por software a la solución final.<br /
    corecore