6 research outputs found

    Soluble Semaphorin 4D Serum Concentrations Are Elevated in Critically Ill Patients with Liver Cirrhosis and Correlate with Aminotransferases

    No full text
    Semaphorin 4D (Sema4D), also known as CD100, is a multifunctional transmembrane protein with immunoregulatory functions. Upon the activation of immune cells, soluble Semaphorin 4D (sSema4D) is proteolytically cleaved from the membrane by metalloproteinases. sSema4D levels are elevated in various (auto-)inflammatory diseases. Our aim was to investigate sSema4D levels in association with sepsis and critical illnesses and to evaluate sSema4D’s potential as a prognostic biomarker. We measured sSema4D levels in 192 patients upon admission to our medical intensive care unit. We found similar levels of sSema4D in 125 patients with sepsis compared to 67 non-septic patients. sSema4D levels correlated with leukocytes but not with other markers of systemic inflammation such as C-reactive protein or procalcitonin. Most interestingly, in a subgroup of patients suffering from pre-existing liver cirrhosis, we observed significantly higher levels of sSema4D. Consistently, sSema4D was also positively correlated with markers of hepatic and cholestatic injury. Our study suggests that sSema4D is not regulated in sepsis compared to other causes of critical illness. However, sSema4D seems to be associated with hepatic injury and inflammation

    Tree Species Composition and Harvest Intensity Affect Herbivore Density and Leaf Damage on Beech, Fagus sylvatica, in Different Landscape Contexts

    Get PDF
    Most forests are exposed to anthropogenic management activities that affect tree species composition and natural ecosystem processes. Changes in ecosystem processes such as herbivory depend on management intensity, and on regional environmental conditions and species pools. Whereas influences of specific forest management measures have already been addressed for different herbivore taxa on a local scale, studies considering effects of different aspects of forest management across different regions are rare. We assessed the influence of tree species composition and intensity of harvesting activities on arthropod herbivores and herbivore-related damage to beech trees, Fagus sylvatica, in 48 forest plots in three regions of Germany. We found that herbivore abundance and damage to beech trees differed between regions and that – despite the regional differences - density of tree-associated arthropod taxa and herbivore damage were consistently affected by tree species composition and harvest intensity. Specifically, overall herbivore damage to beech trees increased with increasing dominance of beech trees – suggesting the action of associational resistance processes – and decreased with harvest intensity. The density of leaf chewers and mines was positively related to leaf damage, and several arthropod groups responded to beech dominance and harvest intensity. The distribution of damage patterns was consistent with a vertical shift of herbivores to higher crown layers during the season and with higher beech dominance. By linking quantitative data on arthropod herbivore abundance and herbivory with tree species composition and harvesting activity in a wide variety of beech forests, our study helps to better understand the influence of forest management on interactions between a naturally dominant deciduous forest tree and arthropod herbivores

    Polymeric Micelles in Targeted Drug Delivery

    No full text
    corecore