2 research outputs found

    Free expansion of a Lieb-Liniger gas: Asymptotic form of the wave functions

    Get PDF
    The asymptotic form of the wave functions describing a freely expanding Lieb-Liniger gas is derived by using a Fermi-Bose transformation for time-dependent states, and the stationary phase approximation. We find that asymptotically the wave functions approach the Tonks-Girardeau (TG) structure as they vanish when any two of the particle coordinates coincide. We point out that the properties of these asymptotic states can significantly differ from the properties of a TG gas in a ground state of an external potential. The dependence of the asymptotic wave function on the initial state is discussed. The analysis encompasses a large class of initial conditions, including the ground states of a Lieb-Liniger gas in physically realistic external potentials. It is also demonstrated that the interaction energy asymptotically decays as a universal power law with time, Eintt3E_\mathrm{int}\propto t^{-3}.Comment: Section VI added to v2; published versio

    2PI nonequilibrium versus transport equations for an ultracold Bose gas

    Full text link
    The far-from-equilibrium dynamics of an ultracold, one-dimensional Bose gas is studied. The focus is set on the comparison between the solutions of fully dynamical evolution equations derived from the 2PI effective action and their corresponding kinetic approximation in the form of Boltzmann-type transport equations. It is shown that during the time evolution of the gas a kinetic description which includes non-Markovian memory effects in a gradient expansion becomes valid. The time scale at which this occurs is shown to exceed significantly the time scale at which the system's evolution enters a near-equilibrium drift period where a fluctuation dissipation relation is found to hold and which would seem to be predestined for the kinetic approximation.Comment: 24 pages, 7 figures. References adde
    corecore