385 research outputs found

    Drug combinations with quercetin: doxorubicin plus quercetin in human breast cancer cells

    Get PDF
    Purpose: Doxorubicin is a first-line chemotherapeutic for breast cancer; however, it is associated with severe side effects to non-tumoral tissues. Thus, it is necessary to develop new therapeutic combinations to improve doxorubicin effects at lower concentration of the drug associated with protective effects for non-tumoral cells. In this work, we evaluated whether the plant-derived flavonoid quercetin may represent such an agent. Methods: The effects of doxorubicin and quercetin as single agents and in combination were evaluated on cell survival, DNA and protein synthesis, oxidative stress, migratory potential and cytoskeleton and nucleus structure in highly invasive and poorly invasive human breast cancer cells in comparison with non-tumoral human breast cells. Results: In human breast cancer cells, quercetin potentiated antitumor effects of doxorubicin specifically in the highly invasive breast cancer cells and attenuated unwanted cytotoxicity to non-tumoral cells. Quercetin interfered with cell metabolism, GST activity, cytoskeleton and invasive properties specifically in breast tumor cells compared with non-tumoral breast cells. Doxorubicin induced DNA damage in tumor and non-tumor cells; however, quercetin reduced this damage only in non-tumoral cells, thus offering a protective effect for these cells. Quercetin also induced polynucleation in aggressive tumor cells, which was maintained in combination with doxorubicin. Conclusions: By combining quercetin with doxorubicin, an increase in doxorubicin effects was obtained specifically in the highly invasive breast cancer cells, while in non-tumoral cells quercetin reduced doxorubicin cytotoxic side effects. Thus, quercetin associated with doxorubicin demonstrated very promising properties for developing chemotherapeutics combinations for the therapy of breast cance

    Stress reaction of kidney epithelial cells to inorganic solid-core nanoparticles

    Get PDF
    A route of accumulation and elimination of therapeutic engineered nanoparticles (NPs) may be the kidney. Therefore, the interactions of different solid-core inorganic NPs (titanium-, silica-, and iron oxide-based NPs) were studied in vitro with the MDCK and LLC-PK epithelial cells as representative cells of the renal epithelia. Following cell exposure to the NPs, observations include cytotoxicity for oleic acid-coated iron oxide NPs, the production of reactive oxygen species for titanium dioxide NPs, and cell depletion of thiols for uncoated iron oxide NPs, whereas for silica NPs an apparent rapid and short-lived increase of thiol levels in both cell lines was observed. Following cell exposure to metallic NPs, the expression of the tranferrin receptor/CD71 was decreased in both cells by iron oxide NPs, but only in MDCK cells by titanium dioxide NPs. The tight association, then subsequent release of NPs by MDCK and LLC-PK kidney epithelial cells, showed that following exposure to the NPs, only MDCK cells could release iron oxide NPs, whereas both cells released titanium dioxide NPs. No transfer of any solid-core NPs across the cell layers was observe

    Fibrogenic Disorders in Human Diseases: From Inflammation to Organ Dysfunction.

    Get PDF
    Fibrosis is an inadequate response to tissue stress with very few therapeutic options to prevent its progression to organ dysfunction. There is an urgent need to identify drugs with a therapeutic potential for fibrosis, either by designing and developing new compounds or by repurposing drugs already in clinical use which were developed for other indications. In this Perspective, we summarize some pathways and biological targets involved in fibrosis development and maintenance, focusing on common mechanisms between organs and diseases. We review the therapeutic agents under experimental development, clinical trials, or in clinical use for the treatment of fibrotic disorders, evaluating the reasons for the discrepancies observed between preclinical and clinical results. We also discuss the improvement that we envision in the development of therapeutic molecules able to achieve improved potential for treatment, including indirect modulators, targeting approaches, or drug combinations

    The contractile properties of vaginal myofibroblasts: Is the myofibroblasts contraction force test a valuable indication of future prolapse development?

    Get PDF
    Using a specific myofibroblast contraction test, we try to predict future utero-vaginal prolapse development in young primiparae women. We compare myofibroblast cultures of the vaginal wall in primiparae women (group 1), young multiparae women (group 2) and older multiparae women (group 3) who were operated on for severe utero-vaginal prolapse. A myofibroblast-mediated collagen gel contraction assay determined a contraction factor that was compared in the three groups of women. The myofibroblasts contraction factor after 24 and 48 hours was significantly higher in group 1 women (2.4 ± 0.6/4.4 ± 1.9) compared to group 2 (1.6 ± 0.3/ 1.8 ± 0.1) andgroup 3 (1.6 ± 0.3/1.8 ± 0.3), but showed no differences in group 1 women without (2.1 ± 0.5/3.5 ± 1.9) and with (2.7 ± 0.6/5.1 ± 1.7) cystocoele. Vaginal myofibroblasts of young women show better contraction forces than young women with severe utero-vaginal prolapse. The latter have a myofibroblast contraction factor similar to those of older post-menopausal women operated for the same conditio

    Fibroblast activation protein-α in fibrogenic disorders and cancer: more than a prolyl-specific peptidase?

    Get PDF
    Fibroblast activation protein-α (FAP-α) belongs to the family of prolyl-specific serine proteases. FAP-α displays both exopeptidase and endopeptidase/gelatinase/collagenase activities. FAP-α protein and/or activity have been associated with fibrosis, inflammation and cancer, but the protein is undetectable in most normal tissues. FAP-α is selectively expressed at sites of tissue remodeling and repair and enhances tumor progression, suggesting that this protease may be a therapeutic target to treat human disorders associated with fibrotic dysregulation. Areas covered: In this review, we summarize the mechanisms driving tissue fibrosis and describe some of the enzymes involved in fibrosis, concentrating on FAP-α. We describe its enzymatic properties, discuss the tools developed to control its activity and the problem of selectivity toward the other proteases of the family and outline its potential biological substrates. We also consider non-enzymatic functions of this protein and suggest that repression of FAP-α expression may represent therapeutic options. Expert opinion: Questions remain regarding the biological functions of FAP-α, either dependent or independent of its enzyme activity. However, as progress is underway to develop FAP-α-specific inhibitors and therapeutic antibodies, its role in diseases associated with fibrosis is starting to emerge, ultimately leading to novel therapeutic options for inflammatory and oncologic diseases

    Expression of dual angiogenic/neurogenic growth factors in human primary brain tumors

    Get PDF
    Brain tumors, benign or malignant, are characterized by a very high degree of vascularization. Recent accumulating evidence suggests that during development the neuronal wiring follows the same routes as the vasculature and that these two systems may share some of the same factors for guidance. Thus, expression of dual angiogenic/neurogenic growth factors was evaluated by insitu hybridization in human primary brain tumors of three different types, i.e., astrocytomas, oligodendrogliomas, and ependymomas, of increasing grades, in relation with the grade and type of the tumor. For this evaluation we selected vascular endothelial growth factor (VEGF-A) and its receptors VEGF-R1 and VEGF-R2 and the neuropilins1 and 2 (NRP-1 and NRP-2), which have proangiogenic properties, platelet-derived growth factor (PDGF) receptor-beta (PDGF-Rβ), which is required for the functional maturation of blood vessels, the ephrins and their Eph receptors, angiotensinogen (AGT) and thrombospondin-2 (TSP-2), which have potential antiangiogenic properties, and netrin-1 (Net-1), which regulates vascular architecture. We show that the expression of the VEGF-NRP system, PDGF-Rβ, TSP-2, AGT, and Net-1 are differentially regulated, either increased or decreased, in relation with the type and grade of the tumor, whereas regulation of the ephrinB system does not seem to be relevant in these human brain tumor

    Synthesis and Anticancer Activity of Long-Chain Isonicotinic Ester Ligand-Containing Arene Ruthenium Complexes and Nanoparticles

    Get PDF
    Arene ruthenium complexes containing long-chain N-ligands L1=NC5H4-4-COO-C6H4-4-O-(CH2)9-CH3 or L2=NC5H4-4-COO-(CH2)10-O-C6H4-4-COO-C6H4-4-C6H4-4-CN derived from isonicotinic acid, of the type [(arene)Ru(L)Cl2] (arene=C6H6, L=L1: 1; arene=p-MeC6H4Pri, L=L1: 2; arene=C6Me6, L=L1: 3; arene=C6H6, L=L2: 4; arene=p-MeC6H4Pri, L=L2: 5; arene=C6Me6, L=L2: 6) have been synthesized from the corresponding [(arene)RuCl2]2 precursor with the long-chain N-ligand L in dichloromethane. Ruthenium nanoparticles stabilized by L1 have been prepared by the solvent-free reduction of 1 with hydrogen or by reducing [(arene)Ru(H2O)3]SO4 in ethanol in the presence of L1 with hydrogen. These complexes and nanoparticles show a high anticancer activity towards human ovarian cell lines, the highest cytotoxicity being obtained for complex 2 (IC50=2μM for A2780 and 7μM for A2780cisR

    Combined arene ruthenium porphyrins as chemotherapeutics and photosensitizers for cancer therapy

    Get PDF
    Mononuclear5-(4-pyridyl)-10,15,20-triphenylporphyrin and 5-(3-pyridyl)-10,15,20-triphenylporphyrin as well as tetranuclear 5,10,15,20-tetra(4-pyridyl)porphyrin (tetra-4-pp) and 5,10,15,20-tetra(3-pyridyl)porphyrin) (tetra-3-pp) arene ruthenium(II) derivatives (areneisC6H5Me or p-Pr i C6H4Me) were prepared and evaluated as potential dual photosensitizers and chemotherapeutics in human Me300 melanoma cells. In the absence of light, all tetranuclear complexes were cytotoxic (IC50≤20μM), while the mononuclear derivatives were not (IC50≥100μM). Kinetic studies of tritiated thymidine and tritiated leucine incorporations in cells exposed to a low concentration (5μM) of tetranuclear p-cymene derivatives demonstrated a rapid inhibition of DNA synthesis, while protein synthesis was inhibited only later, suggesting arene ruthenium-DNA interactions as the initial cytotoxic process. All complexes exhibited phototoxicities toward melanoma cells when exposed to laser light of 652nm. At low concentration (5μM), LD50 of the mononuclear derivatives was between 5 and 10J/cm2, while for the tetranuclear derivatives LD50 was approximately 2.5J/cm2 for the [Ru4(η6-arene)4(tetra-4-pp)Cl8] complexes and less than 0.5J/cm2 for the [Ru4(η6-arene)4(tetra-3-pp)Cl8] complexes. Examination of cells under a fluorescence microscope revealed the [Ru4(η6-arene)4(tetra-4-pp)Cl8] complexes as cytoplasmic aggregates, whereas the [Ru4(η6-arene)4(tetra-3-pp)Cl8] complexes were homogenously dispersed in the cytoplasm. Thus, these complexes present a dual synergistic effect with good properties of both the arene ruthenium chemotherapeutics and the porphyrin photosensitize

    Biological impact assessment of nanomaterial used in nanomedicine. introduction to the NanoTEST project.

    Get PDF
    Therapeutic nanoparticles (NPs) are used in nanomedicine as drug carriers or imaging agents, providing increased selectivity/specificity for diseased tissues. The first NPs in nanomedicine were developed for increasing the efficacy of known drugs displaying dose-limiting toxicity and poor bioavailability and for enhancing disease detection. Nanotechnologies have gained much interest owing to their huge potential for applications in industry and medicine. It is necessary to ensure and control the biocompatibility of the components of therapeutic NPs to guarantee that intrinsic toxicity does not overtake the benefits. In addition to monitoring their toxicity in vitro, in vivo and in silico, it is also necessary to understand their distribution in the human body, their biodegradation and excretion routes and dispersion in the environment. Therefore, a deep understanding of their interactions with living tissues and of their possible effects in the human (and animal) body is required for the safe use of nanoparticulate formulations. Obtaining this information was the main aim of the NanoTEST project, and the goals of the reports collected together in this special issue are to summarise the observations and results obtained by the participating research teams and to provide methodological tools for evaluating the biological impact of NPs

    Notch Antagonists: Potential Modulators of Cancer and Inflammatory Diseases.

    Get PDF
    Notch is a key player in various developmental processes during the embryonic stage as well as in regulating tissue homeostasis, cell differentiation, and stem cell maintenance in adult life. Activation of Notch signaling occurs following Notch receptor-ligand interaction and subsequent enzymatic proteolysis by the gamma-secretase complex, resulting in the cytoplasmic release of a Notch intracellular domain, which translocates to the nucleus to initiate the downstream transcriptional machinery. Notch activation and its aberrant signaling have been broadly linked to the pathogenesis of cancer and some chronic inflammatory diseases resulting in pathologic fibrotic processes. This review focuses on the molecular basis of Notch-induced signaling and its interaction with other pathways to identify therapeutic targets. We also highlight current efforts to pharmacologically intervene in Notch signaling and discuss promising ongoing experimental and clinical studies
    corecore