2 research outputs found

    Intracoronary Levosimendan during Ischemia Prevents Myocardial Apoptosis

    Get PDF
    Background: Levosimendan is a calcium sensitizer that has been shown to prevent myocardial contractile depression in patients post cardiac surgery. This drug exhibits an anti-apoptotic property; however, the underlying mechanism remains elusive. In this report, we characterized the myocardial protective of levosimendan in preventing cardiomyocyte apoptosis and post-operative stunning in an experimental ischemia–reperfusion model. Methods: Three groups of pigs (n = 8 per group) were subjected to 40 min of global, cardioplegic ischemia followed by 240 min of reperfusion. Levosimendan (65 μg/kg body weight) was given to pigs by intravenous infusion (L-IV) before ischemia or intracoronary administration during ischemia (L-IC). The Control group did not receive any levosimendan. Echocardiography was used to monitor cardiac function in all groups. Apoptosis levels were assessed from the left ventricle using the terminal transferase mediated dUTP nick end labeling (TUNEL) assay and immunocytochemical detection of Caspase-3. Results: Pigs after ischemia–reperfusion had a much higher TUNEL%, suggesting that our treatment protocol was effective. Levels of apoptosis were significantly increased in Control pigs that did not receive any levosimendan (0.062 ± 0.044%) relative to those received levosimendan either before (0.02 ± 0.017%, p = 0.03) or during (0.02 ± 0.017%, p = 0.03) the ischemia phase. Longitudinal left ventricular contraction in pigs that received levosimendan before ischemia (0.75 ± 0.12 mm) was significantly higher than those received levosimendan during ischemia (0.53 ± 0.11 mm, p = 0.003) or Control pigs (0.54 ± 0.11 mm, p = 0.01). Conclusion: Our results suggested that pigs received levosimendan displayed a markedly improved cell survival post I–R. The effect on cardiac contractility was only significant in our perfusion heart model when levosimendan was delivered intravenously before ischemia

    Pravastatin-induced improvement in coronary reactivity and circulating ATP and ADP levels in young adults with type 1 diabetes

    Get PDF
    Aims: Extracellular ATP and ADP regulate diverse inflammatory, prothrombotic and vasoactive responses in the vasculature. Statins have been shown to modulate their signaling pathways in vitro. We hypothesized that altered intravascular nucleotide turnover modulates vasodilation in patients with type 1 diabetes (T1DM), and this can be partly restored with pravastatin therapy. Methods: In this randomized double blind study, plasma ATP and ADP levels and echocardiography-derived coronary flow velocity response to cold pressor test (CPT) were concurrently assessed in 42 normocholesterolemic patients with T1DM (age 30 +/- 6 years, LDL cholesterol 2.5 +/- 0.6 mmol/L) before and after four-month treatment with pravastatin 40 mg/day or placebo (n = 22 and n = 20, respectively), and in 41 healthy control subjects. Results: Compared to controls, T1DM patients had significantly higher concentrations of ATP (p <0.01) and ADP (p <0.01) and these levels were partly restored after treatment with pravastatin (p = 0.002 and p = 0.007, respectively), but not after placebo (p = 0.06 and p = 0.14, respectively). Coronary flow velocity acceleration was significantly lower in T1DM patients compared to control subjects, and it increased from pre- to post-intervention in the pravastatin (p = 0.02), but not in placebo group (p = 0.15). Conclusions: Pravastatin treatment significantly reduces circulating ATP and ADP levels of T1DM patients, and concurrently improves coronary flow response to CPT. This study provides a novel insight in purinergic mechanisms involved in pleiotropic effects of pravastatin.Peer reviewe
    corecore