2,716 research outputs found

    Micrometre-scale refrigerators

    Full text link
    A superconductor with a gap in the density of states or a quantum dot with discrete energy levels is a central building block in realizing an electronic on-chip cooler. They can work as energy filters, allowing only hot quasiparticles to tunnel out from the electrode to be cooled. This principle has been employed experimentally since the early 1990s in investigations and demonstrations of micrometre-scale coolers at sub-kelvin temperatures. In this paper, we review the basic experimental conditions in realizing the coolers and the main practical issues that are known to limit their performance. We give an update of experiments performed on cryogenic micrometre-scale coolers in the past five years

    Finite-size effects in dynamics of zero-range processes

    Full text link
    The finite-size effects prominent in zero-range processes exhibiting a condensation transition are studied by using continuous-time Monte Carlo simulations. We observe that, well above the thermodynamic critical point, both static and dynamic properties display fluid-like behavior up to a density {\rho}c (L), which is the finite-size counterpart of the critical density {\rho}c = {\rho}c (L \rightarrow \infty). We determine this density from the cross-over behavior of the average size of the largest cluster. We then show that several dynamical characteristics undergo a qualitative change at this density. In particular, the size distribution of the largest cluster at the moment of relocation, the persistence properties of the largest cluster and correlations in its motion are studied.Comment: http://pre.aps.org/abstract/PRE/v82/i3/e03111

    Primary acquired hypoaldosteronism

    Get PDF

    Experimental determination of the Berry phase in a superconducting charge pump

    Get PDF
    We present the first measurements of the Berry phase in a superconducting Cooper pair pump. A fixed amount of Berry phase is accumulated to the quantum-mechanical ground state in each adiabatic pumping cycle, which is determined by measuring the charge passing through the device. The dynamic and geometric phases are identified and measured quantitatively from their different response when pumping in opposite directions. Our observations, in particular, the dependencies of the dynamic and geometric effects on the superconducting phase bias across the pump, agree with the basic theoretical model of coherent Cooper pair pumping.Comment: 4 pages, 3 figure

    On the structure of covariant phase observables

    Full text link
    We study the mathematical structure of covariant phase observables. Such an observable can alternatively be expressed as a phase matrix, as a sequence of unit vectors, as a sequence of phase states, or as an equivalent class of covariant trace-preserving operations. Covariant generalized operator measures are defined by structure matrices which form a W*-algebra with phase matrices as its subset. The properties of the Radon-Nikodym derivatives of phase probability measures are studied.Comment: 11 page

    Completely positive maps on modules, instruments, extremality problems, and applications to physics

    Full text link
    Convex sets of completely positive maps and positive semidefinite kernels are considered in the most general context of modules over CC^*-algebras and a complete charaterization of their extreme points is obtained. As a byproduct, we determine extreme quantum instruments, preparations, channels, and extreme autocorrelation functions. Various applications to quantum information and measurement theories are given. The structure of quantum instruments is analyzed thoroughly.Comment: 32 page

    Extreme commutative quantum observables are sharp

    Full text link
    It is well known that, in the description of quantum observables, positive operator valued measures (POVMs) generalize projection valued measures (PVMs) and they also turn out be more optimal in many tasks. We show that a commutative POVM is an extreme point in the convex set of all POVMs if and only if it is a PVM. This results implies that non-commutativity is a necessary ingredient to overcome the limitations of PVMs.Comment: 5 pages, minor corrections in v

    Characteristics of the polymer transport in ratchet systems

    Full text link
    Molecules with complex internal structure in time-dependent periodic potentials are studied by using short Rubinstein-Duke model polymers as an example. We extend our earlier work on transport in stochastically varying potentials to cover also deterministic potential switching mechanisms, energetic efficiency and non-uniform charge distributions. We also use currents in the non-equilibrium steady state to identify the dominating mechanisms that lead to polymer transportation and analyze the evolution of the macroscopic state (e.g., total and head-to-head lengths) of the polymers. Several numerical methods are used to solve the master equations and nonlinear optimization problems. The dominating transport mechanisms are found via graph optimization methods. The results show that small changes in the molecule structure and the environment variables can lead to large increases of the drift. The drift and the coherence can be amplified by using deterministic flashing potentials and customized polymer charge distributions. Identifying the dominating transport mechanism by graph analysis tools is found to give insight in how the molecule is transported by the ratchet effect.Comment: 35 pages, 17 figures, to appear in Phys. Rev.
    corecore