89 research outputs found

    Kinetic Inductance Magnetometer

    Full text link
    Ultrasensitive magnetic field detection is utilized in the fields of science, medicine and industry. We report on a novel magnetometer relying on the kinetic inductance of superconducting material. The kinetic inductance exhibits a non-linear response with respect to DC current, a fact that is exploited by applying magnetic flux through a superconducting loop to generate a shielding current and a change in the inductance of the loop. The magnetometer is arranged into a resonator, allowing readout through a transmission measurement that makes the device compatible with radio frequency multiplexing techniques. The device is fabricated using a single thin-film layer of NbN, simplifying the fabrication process compared to existing magnetometer technologies considerably. Our experimental data, supported by theory, demonstrates a magnetometer having potential to replace established technology in applications requiring ultra-high sensitivity.Comment: 16 pages, 6 figure

    Flux-driven Josephson parametric amplifier for sub-GHz frequencies fabricated with side-wall passivated spacer junction technology

    Full text link
    We present experimental results on a Josephson parametric amplifier tailored for readout of ultra-sensitive thermal microwave detectors. In particular, we discuss the impact of fabrication details on the performance. We show that the small volume of deposited dielectric materials enabled by the side-wall passivated spacer niobium junction technology leads to robust operation across a wide range of operating temperatures up to 1.5 K. The flux-pumped amplifier has gain in excess of 20 dB in three-wave mixing and its center frequency is tunable between 540 MHz and 640 MHz. At 600 MHz, the amplifier adds 105 mK ±\pm 9 mK of noise, as determined with the hot/cold source method. Phase-sensitive amplification is demonstrated with the device

    Advanced Concepts in Josephson Junction Reflection Amplifiers

    Full text link
    Low-noise amplification atmicrowave frequencies has become increasingly important for the research related to superconducting qubits and nanoelectromechanical systems. The fundamental limit of added noise by a phase-preserving amplifier is the standard quantum limit, often expressed as noise temperature Tq=ℏω/2kBT_{q} = \hbar {\omega}/2k_{B}. Towards the goal of the quantum limit, we have developed an amplifier based on intrinsic negative resistance of a selectively damped Josephson junction. Here we present measurement results on previously proposed wide-band microwave amplification and discuss the challenges for improvements on the existing designs. We have also studied flux-pumped metamaterial-based parametric amplifiers, whose operating frequency can be widely tuned by external DC-flux, and demonstrate operation at 2ω2\omega pumping, in contrast to the typical metamaterial amplifiers pumped via signal lines at ω\omega.Comment: 9 pages, 6 figure

    Dynamics of Bloch oscillating transistor near the bifurcation threshold

    Get PDF
    The tendency to bifurcate can often be utilized to improve performance characteristics of amplifiers or even to build detectors. The Bloch oscillating transistor is such a device. Here, we show that bistable behavior can be approached by tuning the base current and that the critical value depends on the Josephson coupling energy EJ of the device. We demonstrate current-gain enhancement for the device operating near the bifurcation point at small EJ. From our results for the current gains at various EJ, we determine the bifurcation threshold on the EJ-base current plane. The bifurcation threshold curve can be understood using the interplay of interband and intraband tunneling events.Peer reviewe

    Thermoelectric bolometers based on ultra-thin heavily doped single-crystal silicon membranes

    Full text link
    We present ultra-thin silicon membrane thermocouple bolometers suitable for fast and sensitive detection of low levels of thermal power and infrared radiation at room temperature. The devices are based on 40 nm-thick strain tuned single crystalline silicon membranes shaped into heater/absorber area and narrow n- and p-doped beams, which operate as the thermocouple. The electro-thermal characterization of the devices reveal noise equivalent power of 13 pW/rtHz and thermal time constant of 2.5 ms. The high sensitivity of the devices is due to the high Seebeck coefficient of 0.39 mV/K and reduction of thermal conductivity of the Si beams from the bulk value. The bolometers operate in the Johnson-Nyquist noise limit of the thermocouple, and the performance improvement towards the operation close to the temperature fluctuation limit is discussed.Comment: 11 pages, 3 figure

    Multiplexed readout of kinetic inductance bolometer arrays

    Full text link
    Kinetic inductance bolometer (KIB) technology is a candidate for passive sub-millimeter wave and terahertz imaging systems. Its benefits include scalability into large 2D arrays and operation with intermediate cryogenics in the temperature range of 5 -- 10 K. We have previously demonstrated the scalability in terms of device fabrication, optics integration, and cryogenics. In this article, we address the last missing ingredient, the readout. The concept, serial addressed frequency excitation (SAFE), is an alternative to full frequency-division multiplexing at microwave frequencies conventionally used to read out kinetic inductance detectors. We introduce the concept, and analyze the criteria of the multiplexed readout avoiding the degradation of the signal-to-noise ratio in the presence of a thermal anti-alias filter inherent to thermal detectors. We present a practical scalable realization of a readout system integrated into a prototype imager with 8712 detectors. This is used for demonstrating the noise properties of the readout. Furthermore, we present practical detection experiments with a stand-off laboratory-scale imager.Comment: 7 pages, 6 figure

    Dynamical Casimir effect in a Josephson metamaterial

    Full text link
    Vacuum modes confined into an electromagnetic cavity give rise to an attractive interaction between the opposite walls. When the distance between the walls is changed non-adiabatically, virtual vacuum modes are turned into real particles, i.e. photons are generated out of the vacuum. These effects are known as the static and dynamical Casimir effect, respectively. Here we demonstrate the dynamical Casimir effect using a Josephson metamaterial embedded in a microwave cavity at 5.4 GHz. We achieve the non-adiabatic change in the effective length of the cavity by flux-modulation of the SQUID-based metamaterial, which results in a few percent variation in the velocity of light. We show that energy-correlated photons are generated from the ground state of the cavity and that their power spectra display a bimodal frequency distribution. These results are in excellent agreement with theoretical predictions, all the way to the regime where classical parametric effects cannot be of consequence.Comment: 4 pages, 3 figures, supplement at http://ltl.tkk.fi/~pjh/DCE
    • …
    corecore