5 research outputs found

    A novel quark-field creation operator construction for hadronic physics in lattice QCD

    Full text link
    A new quark-field smearing algorithm is defined which enables efficient calculations of a broad range of hadron correlation functions. The technique applies a low-rank operator to define smooth fields that are to be used in hadron creation operators. The resulting space of smooth fields is small enough that all elements of the reduced quark propagator can be computed exactly at reasonable computational cost. Correlations between arbitrary sources, including multi hadron operators can be computed a posteriori without requiring new lattice Dirac operator inversions. The method is tested on realistic lattice sizes with light dynamical quarks.Comment: 14 pages, 9 figure

    Extended hadron and two-hadron operators of definite momentum for spectrum calculations in lattice QCD

    No full text
    <p>Multihadron operators are crucial for reliably extracting the masses of excited states lying above multihadron thresholds in lattice QCD Monte Carlo calculations. The construction of multihadron operators with significant coupling to the lowest-lying multihadron states of interest involves combining single hadron operators of various momenta. The design and implementation of large sets of spatially-extended single-hadron operators of definite momentum and their combinations into two-hadron operators are described. The single hadron operators are all assemblages of gauge-covariantly-displaced, smeared quark fields. Group-theoretical projections onto the irreducible representations of the symmetry group of a cubic spatial lattice are used in all isospin channels. Tests of these operators on 243×128 and 323×256 anisotropic lattices using a stochastic method of treating the low-lying modes of quark propagation which exploits Laplacian Heaviside quark-field smearing are presented. The method provides reliable estimates of all needed correlations, even those that are particularly difficult to compute, such as ηη→ηη in the scalar channel, which involves the subtraction of a large vacuum expectation value. A new glueball operator is introduced, and the evaluation of the mixing of this glueball operator with a quark-antiquark operator, ππ, and ηη operators is shown to be feasible.</p

    Lattice QCD determination of patterns of excited baryon states

    No full text
    Energies for excited isospin I=1/2 and I=3/2 states that include the nucleon and Δ families of baryons are computed using quenched, anisotropic lattices. Baryon interpolating field operators that are used include nonlocal operators that provide G2 irreducible representations of the octahedral group. The decomposition of spin 5/2 or higher spin states is realized for the first time in a lattice QCD calculation. We observe patterns of degenerate energies in the irreducible representations of the octahedral group that correspond to the subduction of the continuum spin 5/2 or higher. The overall pattern of low-lying excited states corresponds well to the pattern of physical states subduced to the irreducible representations of the octahedral group.</p

    Novel quark-field creation operator construction for hadronic physics in lattice QCD

    No full text
    A new quark-field smearing algorithm is defined which enables efficient calculations of a broad range of hadron correlation functions. The technique applies a low-rank operator to define smooth fields that are to be used in hadron creation operators. The resulting space of smooth fields is small enough that all elements of the reduced quark propagator can be computed exactly at reasonable computational cost. Correlations between arbitrary sources, including multihadron operators can be computed a posteriori without requiring new lattice Dirac operator inversions. The method is tested on realistic lattice sizes with light dynamical quarks.</p
    corecore