13 research outputs found

    Early markers for myocardial ischemia and sudden cardiac death.

    Get PDF
    The post-mortem diagnosis of acute myocardial ischemia remains a challenge for both clinical and forensic pathologists. We performed an experimental study (ligation of left anterior descending coronary artery in rats) in order to identify early markers of myocardial ischemia, to further apply to forensic and clinical pathology in cases of sudden cardiac death. Using immunohistochemistry, Western blots, and gene expression analyses, we investigated a number of markers, selected among those which are currently used in emergency departments to diagnose myocardial infarction and those which are under investigation in basic research and autopsy pathology studies on cardiovascular diseases. The study was performed on 44 adult male Lewis rats, assigned to three experimental groups: control, sham-operated, and operated. The durations of ischemia ranged between 5 min and 24 h. The investigated markers were troponins I and T, myoglobin, fibronectin, C5b-9, connexin 43 (dephosphorylated), JunB, cytochrome c, and TUNEL staining. The earliest expressions (≤30 min) were observed for connexin 43, JunB, and cytochrome c, followed by fibronectin (≤1 h), myoglobin (≤1 h), troponins I and T (≤1 h), TUNEL (≤1 h), and C5b-9 (≤2 h). By this investigation, we identified a panel of true early markers of myocardial ischemia and delineated their temporal evolution in expression by employing new technologies for gene expression analysis, in addition to traditional and routine methods (such as histology and immunohistochemistry). Moreover, for the first time in the autopsy pathology field, we identified, by immunohistochemistry, two very early markers of myocardial ischemia: dephosphorylated connexin 43 and JunB

    Early markers of myocardial ischemia: from the experimental model to forensic pathology cases of sudden cardiac death.

    No full text
    The goal of this study was to assess whether early markers of myocardial ischemia, identified in a previous experimental work, can be applied in forensic pathology cases of sudden, ischemic cardiac death. These markers include desphosphorylated connexin 43 (Cx43), JunB, TUNEL assay, myoglobin, and troponin T. Fourteen cases of sudden cardiac death with gross and/or histological signs of myocardial infarction and 14 cases of sudden cardiac death with signs of early ischemia at histology and positive immunoreactions for fibronectin and C5b-9 were investigated. The control group was represented by 15 hanging (global hypoxia) cases. Immunohistochemical reactions were classified into four degrees and compared among groups. Cx43 and JunB were significantly more expressed in hanging than in ischemia/infarction, but they showed a different distribution in the tissue (sub-endocardial in ischemia/infarction, diffuse in hanging) and a different intensity of the signal. TUNEL assay was significantly more expressed in the group of early ischemia than in myocardial infarction. Myoglobin and troponin T did not show any significantly different expression among the three groups. Depletion markers have a limited application in forensic cases, and this is mostly because positive (depleted) areas are difficult to distinguish from artifactually paler areas. Nuclear markers (JunB and TUNEL), on the other hand, require a well-trained eye and a high magnification in order to be distinguished. Cx43, JunB, and TUNEL assays were confirmed to be early, sensitive markers for myocardial ischemia. Nonetheless, they are not specific, as they are expressed in global hypoxia as well, but with a different tissular distribution
    corecore