14 research outputs found

    4D flow MRI of type B dissection with later retrograde progression to type A dissection in Marfan: a case report

    Get PDF
    Background Due to the malfunction of connective tissue, Marfan patients are at increased risk of aortic dissection. Uncomplicated acute type B dissection is usually managed with medical therapy. Retrograde progression or new type A dissection is a relatively rare but often fatal complication that occur most frequently in the first 6 months after acute type B dissection.Case summary We present a 31-year-old male with Marfan syndrome and a recent uncomplicated type B dissection from the left subclavian to the right common iliac artery who underwent 4D flow magnetic resonance imaging (MRI). The dissection had a large proximal intimal tear just distal to the left subclavian artery (15 mm) and large false lumen (35 mm). Aortic blood flow just distal to the left subclavian artery (3.6 L/min) was split disproportionately into the true (0.8 L/min, 22%) and false lumen (2.8 L/min, 78%). 4D flow streamlines revealed vortical flow in the proximal false lumen. Increased wall shear stress was observed at the sinotubular junction (STJ), inner wall of the ascending aorta and around the subclavian artery. Two weeks after MRI, the patient presented with jaw pain. Computed tomography showed a type A dissection with an entry tear at the STJ for which an acute valve-sparing root, ascending and arch replacement was performed.Discussion Better risk assessment of life-threatening complications in uncomplicated type B dissections could improve treatment strategies in these patients. Our case demonstrates that besides clinical and morphological parameters, flow derived parameters could aid in improved risk assessment for retrograde progression from uncomplicated type B dissection to acute type A dissection.Cardiolog

    Assessment of turbulent blood flow and wall shear stress in aortic coarctation using image-based simulations

    Get PDF
    In this study, we analyzed turbulent flows through a phantom (a 180 degrees bend with narrowing) at peak systole and a patient-specific coarctation of the aorta (CoA), with a pulsating flow, using magnetic resonance imaging (MRI) and computational fluid dynamics (CFD). For MRI, a 4D-flow MRI is performed using a 3T scanner. For CFD, the standard k - epsilon, shear stress transport k - omega, and Reynolds stress (RSM) models are applied. A good agreement between measured and simulated velocity is obtained for the phantom, especially for CFD with RSM. The wall shear stress (WSS) shows significant differences between CFD and MRI in absolute values, due to the limited near-wall resolution of MRI. However, normalized WSS shows qualitatively very similar distributions of the local values between MRI and CFD. Finally, a direct comparison between in vivo 4D-flow MRI and CFD with the RSM turbulence model is performed in the CoA. MRI can properly identify regions with locally elevated or suppressed WSS. If the exact values of the WSS are necessary, CFD is the preferred method. For future applications, we recommend the use of the combined MRI/CFD method for analysis and evaluation of the local flow patterns and WSS in the aorta.Cardiovascular Aspects of Radiolog

    Characterization of ascending aortic flow in patients with degenerative aneurysms a 4D flow magnetic resonance study

    Get PDF
    Objectives Degenerative thoracic aortic aneurysm (TAA) patients are known to be at risk of life-threatening acute aortic events. Guidelines recommend preemptive surgery at diameters of greater than 55 mm, although many patients with small aneurysms show only mild growth rates and more than half of complications occur in aneurysms below this threshold. Thus, assessment of hemodynamics using 4-dimensional flow magnetic resonance has been of interest to obtain more insights in aneurysm development. Nonetheless, the role of aberrant flow patterns in TAA patients is not yet fully understood. Materials and Methods A total of 25 TAA patients and 22 controls underwent time-resolved 3-dimensional phase contrast magnetic resonance imaging with 3-directional velocity encoding (ie, 4-dimensional flow magnetic resonance imaging). Hemodynamic parameters such as vorticity, helicity, and wall shear stress (WSS) were calculated from velocity data in 3 anatomical segments of the ascending aorta (root, proximal, and distal). Regional WSS distribution was assessed for the full cardiac cycle. Results Flow vorticity and helicity were significantly lower for TAA patients in all segments. The proximal ascending aorta showed a significant increase in peak WSS in the outer curvature in TAA patients, whereas WSS values at the inner curvature were significantly lower as compared with controls. Furthermore, positive WSS gradients from sinotubular junction to midascending aorta were most prominent in the outer curvature, whereas from midascending aorta to brachiocephalic trunk, the outer curvature showed negative WSS gradients in the TAA group. Controls solely showed a positive gradient at the inner curvature for both segments. Conclusions Degenerative TAA patients show a decrease in flow vorticity and helicity, which is likely to cause perturbations in physiological flow patterns. The subsequent differing distribution of WSS might be a contributor to vessel wall remodeling and aneurysm formation.Cardiolog

    4D flow cardiovascular magnetic resonance derived energetics in the Fontan circulation correlate with exercise capacity and CMR-derived liver fibrosis/congestion

    Get PDF
    Aim This study explores the relationship between in vivo 4D flow cardiovascular magnetic resonance (CMR) derived blood flow energetics in the total cavopulmonary connection (TCPC), exercise capacity and CMR-derived liver fibrosis/congestion. Background The Fontan circulation, in which both caval veins are directly connected with the pulmonary arteries (i.e. the TCPC) is the palliative approach for single ventricle patients. Blood flow efficiency in the TCPC has been associated with exercise capacity and liver fibrosis using computational fluid dynamic modelling. 4D flow CMR allows for assessment of in vivo blood flow energetics, including kinetic energy (KE) and viscous energy loss rate (EL). Methods Fontan patients were prospectively evaluated between 2018 and 2021 using a comprehensive cardiovascular and liver CMR protocol, including 4D flow imaging of the TCPC. Peak oxygen consumption (VO2) was determined using cardiopulmonary exercise testing (CPET). Iron-corrected whole liver T1 (cT1) mapping was performed as a marker of liver fibrosis/congestion. KE and EL in the TCPC were computed from 4D flow CMR and normalized for inflow. Furthermore, blood flow energetics were compared between standardized segments of the TCPC. Results Sixty-two Fontan patients were included (53% male, 17.3 +/- 5.1 years). Maximal effort CPET was obtained in 50 patients (peak VO2 27.1 +/- 6.2 ml/kg/min, 56 +/- 12% of predicted). Both KE and EL in the entire TCPC (n = 28) were significantly correlated with cT1 (r = 0.50, p = 0.006 and r = 0.39, p = 0.04, respectively), peak VO2 (r = - 0.61, p = 0.003 and r = - 0.54, p = 0.009, respectively) and % predicted peak VO2 (r = - 0.44, p = 0.04 and r = - 0.46, p = 0.03, respectively). Segmental analysis indicated that the most adverse flow energetics were found in the Fontan tunnel and left pulmonary artery. Conclusions Adverse 4D flow CMR derived KE and EL in the TCPC correlate with decreased exercise capacity and increased levels of liver fibrosis/congestion. 4D flow CMR is promising as a non-invasive screening tool for identification of patients with adverse TCPC flow efficiency.Cardiovascular Aspects of Radiolog

    Reduced scan time and superior image quality with 3D flow MRI compared to 4D flow MRI for hemodynamic evaluation of the Fontan pathway

    Get PDF
    Long scan times prohibit a widespread clinical applicability of 4D flow MRI in Fontan patients. As pulsatility in the Fontan pathway is minimal during the cardiac cycle, acquiring non-ECG gated 3D flow MRI may result in a reduction of scan time while accurately obtaining time-averaged clinical parameters in comparison with 2D and 4D flow MRI. Thirty-two Fontan patients prospectively underwent 2D (reference), 3D and 4D flow MRI of the Fontan pathway. Multiple clinical parameters were assessed from time-averaged flow rates, including the right-to-left pulmonary flow distribution (main endpoint) and systemic-to-pulmonary collateral flow (SPCF). A ten-fold reduction in scan time was achieved [4D flow 15.9 min (SD 2.7 min) and 3D flow 1.6 min (SD 7.8 s), p<0.001] with a superior signal-to-noise ratio [mean ratio of SNRs 1.7 (0.8), p<0.001] and vessel sharpness [mean ratio 1.2 (0.4), p=0.01] with 3D flow. Compared to 2D flow, good-excellent agreement was shown for mean flow rates (ICC 0.82-0.96) and right-to-left pulmonary flow distribution (ICC 0.97). SPCF derived from 3D flow showed good agreement with that from 4D flow (ICC 0.86). 3D flow MRI allows for obtaining time-averaged flow rates and derived clinical parameters in the Fontan pathway with good-excellent agreement with 2D and 4D flow, but with a tenfold reduction in scan time and significantly improved image quality compared to 4D flow.Developmen

    Wall shear stress in the thoracic aorta at rest and with dobutamine stress after arterial switch operation

    No full text
    Abstract OBJECTIVES Progressive root dilatation is an important complication in patients with transposition of the great arteries (TGA) after arterial switch operation (ASO) that may be caused by altered flow dynamics. Aortic wall shear stress (WSS) distribution at rest and under dobutamine stress (DS) conditions using 4D flow magnetic resonance imaging were investigated in relation to thoracic aorta geometry. METHODS 4D flow magnetic resonance imaging was performed in 16 adolescent TGA patients after ASO (rest and DS condition) and in 10 healthy controls (rest). The primary outcome measure was the WSS distribution along the aortic segments and the WSS change with DS in TGA patients. Based on the results, we secondary zoomed in on factors [aortic geometry and left ventricular (LV) function parameters] that might relate to these WSS distribution differences. Aortic diameters, arch angle, LV function parameters (stroke volume, LV ejection fraction, cardiac output) and peak systolic aortic WSS were obtained. RESULTS TGA patients had significantly larger neoaortic root and smaller mid-ascending aorta (AAo) dimensions and aortic arch angle. At rest, patients had significantly higher WSS in the entire thoracic aorta, except for the dilated root. High WSS levels beyond the proximal AAo were associated with the diameter decrease from the root to the mid-AAo (correlation coefficient r = 0.54–0.59, P = 0.022–0.031), not associated with the aortic arch angle. During DS, WSS increased in all aortic segments (P &lt; 0.001), most pronounced in the AAo segments. The increase in LV ejection fraction, stroke volume and cardiac output as a result of DS showed a moderate linear relationship with the WSS increase in the distal AAo (correlation coefficient r = 0.54–0.57, P = 0.002–0.038). CONCLUSIONS Increased aortic WSS was observed in TGA patients after ASO, related to the ASO-specific geometry, which increased with DS. Stress-enhanced elevated WSS may play a role in neoaortic root dilatation and anterior aortic wall thinning of the distal AAo. Developmen

    Reproducibility of aorta segmentation on 4D flow MRI in healthy volunteers

    Get PDF
    Background Hemodynamic aorta parameters can be derived from 4D flow MRI, but this requires lumen segmentation. In both commercially available and research 4D flow MRI software tools, lumen segmentation is mostly (semi-)automatically performed and subsequently manually improved by an observer. Since the segmentation variability, together with 4D flow MRI data and image processing algorithms, will contribute to the reproducibility of patient-specific flow properties, the observer's lumen segmentation reproducibility and repeatability needs to be assessed.Purpose To determine the interexamination, interobserver reproducibility, and intraobserver repeatability of aortic lumen segmentation on 4D flow MRI.Study Type Prospective and retrospective.Population A healthy volunteer cohort of 10 subjects who underwent 4D flow MRI twice. Also, a clinical cohort of six subjects who underwent 4D flow MRI once.Field Strength/Sequence 3T; time-resolved three-directional and 3D velocity-encoded sequence (4D flow MRI).Assessment The thoracic aorta was segmented on the 4D flow MRI in five systolic phases. By positioning six planes perpendicular to a segmentation's centerline, the aorta was divided into five segments. The volume, surface area, centerline length, maximal diameter, and curvature radius were determined for each segment.Statistical Tests To assess the reproducibility, the coefficient of variation (COV), Pearson correlation coefficient (r), and intraclass correlation coefficient (ICC) were calculated.Results The interexamination and interobserver reproducibility and intraobserver repeatability were comparable for each parameter. For both cohorts there was very good reproducibility and repeatability for volume, surface area, and centerline length (COV = 10-32%, r = 0.54-0.95 and ICC = 0.65-0.99), excellent reproducibility and repeatability for maximal diameter (COV = 3-11%, r = 0.94-0.99, ICC = 0.94-0.99), and good reproducibility and repeatability for curvature radius (COV = 25-62%, r = 0.73-0.95, ICC = 0.84-0.97).Data Conclusion This study demonstrated no major reproducibility and repeatability limitations for 4D flow MRI aortic lumen segmentation.Level of Evidence 3Technical Efficacy Stage

    Ascending aorta curvature and flow displacement are associated with accelerated aortic growth at long-term follow-up: a MRI study in Marfan and thoracic aortic aneurysm patients

    No full text
    Background: Aortic aneurysm formation is associated with increased risk of aortic dissection. Current diagnostic strategies are focused on diameter growth, the predictive value of aortic morphology and function remains underinvestigated. We aimed to assess the long-term prognostic value of ascending aorta (AA) curvature radius, regional pulse wave velocity (PWV) and flow displacement (FD) on aortic dilatation/elongation and evaluated adverse outcomes (proximal aortic surgery, dissection/rupture, death) in Marfan and non-syndromic thoracic aortic aneurysm (NTAA) patients.Methods: Long-term magnetic resonance imaging (MRI) and clinical follow-up of two previous studies consisting of 21 Marfan and 40 NTAA patients were collected. Baseline regional PWV, AA curvature radius and normalized FD were assessed as well as diameter and length growth rate at follow-up. Multivariate linear regression was performed to evaluate whether baseline predictors were associated with aortic growth.=.Results: Of the 61 patients, 49 patients were included with MRI follow-up (n = 44) and/or adverse aortic events (n = 7). Six had undergone aortic surgery, no dissection/rupture occurred and one patient died during follow-up. During 8.0 [7.3-10.7] years of follow-up, AA growth rate was 0.40 +/- 0.31 mm/year. After correction for confounders, AA curvature radius (p = 0.01), but not FD or PWV, was a predictor of AA dilatation. Only FD was associated with AA elongation (p = 0.01).Conclusion: In Marfan and non-syndromic thoracic aortic aneurysm patients, ascending aorta curvature radius and flow displacement are associated with accelerated aortic growth at long-term follow-up. These markers may aid in the risk stratification of ascending aorta elongation and aneurysm formation.Radiolog

    Ascending aorta curvature and flow displacement are associated with accelerated aortic growth at long-term follow-up: a MRI study in Marfan and thoracic aortic aneurysm patients

    No full text
    Background: Aortic aneurysm formation is associated with increased risk of aortic dissection. Current diagnostic strategies are focused on diameter growth, the predictive value of aortic morphology and function remains underinvestigated. We aimed to assess the long-term prognostic value of ascending aorta (AA) curvature radius, regional pulse wave velocity (PWV) and flow displacement (FD) on aortic dilatation/elongation and evaluated adverse outcomes (proximal aortic surgery, dissection/rupture, death) in Marfan and non-syndromic thoracic aortic aneurysm (NTAA) patients.Methods: Long-term magnetic resonance imaging (MRI) and clinical follow-up of two previous studies consisting of 21 Marfan and 40 NTAA patients were collected. Baseline regional PWV, AA curvature radius and normalized FD were assessed as well as diameter and length growth rate at follow-up. Multivariate linear regression was performed to evaluate whether baseline predictors were associated with aortic growth.=.Results: Of the 61 patients, 49 patients were included with MRI follow-up (n = 44) and/or adverse aortic events (n = 7). Six had undergone aortic surgery, no dissection/rupture occurred and one patient died during follow-up. During 8.0 [7.3-10.7] years of follow-up, AA growth rate was 0.40 +/- 0.31 mm/year. After correction for confounders, AA curvature radius (p = 0.01), but not FD or PWV, was a predictor of AA dilatation. Only FD was associated with AA elongation (p = 0.01).Conclusion: In Marfan and non-syndromic thoracic aortic aneurysm patients, ascending aorta curvature radius and flow displacement are associated with accelerated aortic growth at long-term follow-up. These markers may aid in the risk stratification of ascending aorta elongation and aneurysm formation.</p

    Non-uniform mixing of hepatic venous flow and inferior vena cava flow in the Fontan conduit

    Get PDF
    Fontan patients require a balanced hepatic blood flow distribution (HFD) to prevent pulmonary arteriovenous malformations. Currently, HFD is quantified by tracking Fontan conduit flow, assuming hepatic venous (HV) flow to be uniformly distributed within the Fontan conduit. However, this assumption may be unvalid leading to inaccuracies in HFD quantification with potential clinical impact. The aim of this study was to (i) assess the mixing of HV flow and inferior vena caval (IVC) flow within the Fontan conduit and (ii) quantify HFD by directly tracking HV flow and quantitatively comparing results with the conventional approach. Patient-specific, time-resolved computational fluid dynamic models of 15 total cavopulmonary connections were generated, including the HV and subhepatic IVC. Mixing of HV and IVC flow, on a scale between 0 (no mixing) and 1 (perfect mixing), was assessed at the caudal and cranial Fontan conduit. HFD was quantified by tracking particles from the caudal (HFDcaudal conduit) and cranial (HFDcranial conduit) conduit and from the hepatic veins (HFDHV). HV flow was non-uniformly distributed at both the caudal (mean mixing 0.66 ± 0.13) and cranial (mean 0.79 ± 0.11) level within the Fontan conduit. On a cohort level, differences in HFD between methods were significant but small; HFDHV (51.0 ± 20.6%) versus HFDcaudal conduit (48.2 ± 21.9%, p = 0.033) or HFDcranial conduit (48.0 ± 21.9%, p = 0.044). However, individual absolute differences of 8.2-14.9% in HFD were observed in 4/15 patients. HV flow is non-uniformly distributed within the Fontan conduit. Substantial individual inaccuracies in HFD quantification were observed in a subset of patients with potential clinical impact.ChemE/Transport Phenomen
    corecore