7 research outputs found

    Impact of the communication and patient hand-off tool SBAR on patient safety: a systematic review

    Get PDF
    Objectives Communication breakdown is one of the main causes of adverse events in clinical routine, particularly in handover situations. The communication tool SBAR (situation, background, assessment and recommendation) was developed to increase handover quality and is widely assumed to increase patient safety. The objective of this review is to summarise the impact of the implementation of SBAR on patient safety. Design A systematic review of articles published on SBAR was performed in PUBMED, EMBASE, CINAHL, Cochrane Library and PsycINFO in January 2017. All original research articles on SBAR fulfilling the following eligibility criteria were included: (1) SBAR was implemented into clinical routine, (2) the investigation of SBAR was the primary objective and (3) at least one patient outcome was reported. Setting A wide range of settings within primary and secondary care and nursing homes. Participants A variety of heath professionals including nurses and physicians. Primary and secondary outcome measures Aspects of patient safety (patient outcomes) defined as the occurrence or incidence of adverse events. Results Eight studies with a before-after design and three controlled clinical trials performed in different clinical settings met the inclusion criteria. The objectives of the studies were to improve team communication, patient hand-offs and communication in telephone calls from nurses to physicians. The studies were heterogeneous with regard to study characteristics, especially patient outcomes. In total, 26 different patient outcomes were measured, of which eight were reported to be significantly improved. Eleven were described as improved but no further statistical tests were reported, and six outcomes did not change significantly. Only one study reported a descriptive reduction in patient outcomes. Conclusions This review found moderate evidence for improved patient safety through SBAR implementation, especially when used to structure communication over the phone. However, there is a lack of high-quality research on this widely used communication tool. Trial registration non

    Drug safety evaluation of intravitreal triamcinolone acetonide

    No full text
    Introduction: Triamcinolone acetonide (TA) is a steroidal drug that has been widely administered intravitreally for retinal and choroidal conditions. Safety of steroidal products for intraocular use is essential because of their risk of ocular adverse events. This review comprehensively discusses the safety of intravitreal administration of TA. Areas covered: This paper analyzes the mechanisms of action and key pharmacokinetic attributes and provides a discussion of the main clinical trials investigating clinical applications of intravitreal TA. The safety of intravitreal TA is evaluated through a search of the Medline database from 1980 to 2011. The most relevant literature on the safety of intravitreal TA is also discussed. Expert opinion: The complications of intravitreal TA therapy include secondary ocular hypertension in about 20 40% of eyes, steroid-induced cataract in about 15 20% of cases and postinjection infectious endophthalmitis and pseudoendophthalmitis in less than 1%. TA is an effective drug for various retinal and choroidal diseases when delivered intravitreally. It may imply an off-label use and it may be associated with ocular adverse events. Intravitreal TA is not associated with significant systemic safety risks. \ua9 2012 Informa UK, Ltd

    Global trait:environment relationships of plant communities

    No full text
    Abstract Plant functional traits directly affect ecosystem functions. At the species level, trait combinations depend on trade-offs representing different ecological strategies, but at the community level trait combinations are expected to be decoupled from these trade-offs because different strategies can facilitate co-existence within communities. A key question is to what extent community-level trait composition is globally filtered and how well it is related to global versus local environmental drivers. Here, we perform a global, plot-level analysis of trait–environment relationships, using a database with more than 1.1 million vegetation plots and 26,632 plant species with trait information. Although we found a strong filtering of 17 functional traits, similar climate and soil conditions support communities differing greatly in mean trait values. The two main community trait axes that capture half of the global trait variation (plant stature and resource acquisitiveness) reflect the trade-offs at the species level but are weakly associated with climate and soil conditions at the global scale. Similarly, within-plot trait variation does not vary systematically with macro-environment. Our results indicate that, at fine spatial grain, macro-environmental drivers are much less important for functional trait composition than has been assumed from floristic analyses restricted to co-occurrence in large grid cells. Instead, trait combinations seem to be predominantly filtered by local-scale factors such as disturbance, fine-scale soil conditions, niche partitioning and biotic interactions

    sPlotOpen:an environmentally balanced, open-access, global dataset of vegetation plots

    No full text
    Abstract Motivation: Assessing biodiversity status and trends in plant communities is critical for understanding, quantifying and predicting the effects of global change on ecosystems. Vegetation plots record the occurrence or abundance of all plant species co-occurring within delimited local areas. This allows species absences to be inferred, information seldom provided by existing global plant datasets. Although many vegetation plots have been recorded, most are not available to the global research community. A recent initiative, called ‘sPlot’, compiled the first global vegetation plot database, and continues to grow and curate it. The sPlot database, however, is extremely unbalanced spatially and environmentally, and is not open-access. Here, we address both these issues by (a) resampling the vegetation plots using several environmental variables as sampling strata and (b) securing permission from data holders of 105 local-to-regional datasets to openly release data. We thus present sPlotOpen, the largest open-access dataset of vegetation plots ever released. sPlotOpen can be used to explore global diversity at the plant community level, as ground truth data in remote sensing applications, or as a baseline for biodiversity monitoring. Main types of variable contained: Vegetation plots (n = 95,104) recording cover or abundance of naturally co-occurring vascular plant species within delimited areas. sPlotOpen contains three partially overlapping resampled datasets (c. 50,000 plots each), to be used as replicates in global analyses. Besides geographical location, date, plot size, biome, elevation, slope, aspect, vegetation type, naturalness, coverage of various vegetation layers, and source dataset, plot-level data also include community-weighted means and variances of 18 plant functional traits from the TRY Plant Trait Database. Spatial location and grain: Global, 0.01–40,000 mÂČ. Time period and grain: 1888–2015, recording dates. Major taxa and level of measurement: 42,677 vascular plant taxa, plot-level records. Software format: Three main matrices (.csv), relationally linked

    sPlot:a new tool for global vegetation analyses

    No full text
    Abstract Aims: Vegetation‐plot records provide information on the presence and cover or abundance of plants co‐occurring in the same community. Vegetation‐plot data are spread across research groups, environmental agencies and biodiversity research centers and, thus, are rarely accessible at continental or global scales. Here we present the sPlot database, which collates vegetation plots worldwide to allow for the exploration of global patterns in taxonomic, functional and phylogenetic diversity at the plant community level. Results: sPlot version 2.1 contains records from 1,121,244 vegetation plots, which comprise 23,586,216 records of plant species and their relative cover or abundance in plots collected worldwide between 1885 and 2015. We complemented the information for each plot by retrieving climate and soil conditions and the biogeographic context (e.g., biomes) from external sources, and by calculating community‐weighted means and variances of traits using gap‐filled data from the global plant trait database TRY. Moreover, we created a phylogenetic tree for 50,167 out of the 54,519 species identified in the plots. We present the first maps of global patterns of community richness and community‐weighted means of key traits. Conclusions: The availability of vegetation plot data in sPlot offers new avenues for vegetation analysis at the global scale
    corecore