26 research outputs found

    COL4A3 is degraded in allergic asthma and degradation predicts response to anti-IgE therapy.

    Get PDF
    BACKGROUND Asthma is a heterogeneous syndrome substantiating the urgent requirement for endotype-specific biomarkers. Dysbalance of fibrosis and fibrolysis in asthmatic lung tissue leads to reduced levels of the inflammation-protective collagen 4 (COL4A3). OBJECTIVE To delineate the degradation of COL4A3 in allergic airway inflammation and evaluate the resultant product as a biomarker for anti-IgE therapy response. METHODS The serological COL4A3 degradation marker C4Ma3 (Nordic Bioscience, Denmark) and serum cytokines were measured in the ALLIANCE cohort (pediatric cases/controls: 134/35; adult cases/controls: 149/31). Exacerbation of allergic airway disease in mice was induced by sensitising to OVA, challenge with OVA aerosol and instillation of poly(cytidylic-inosinic). Fulacimstat (chymase inhibitor, Bayer) was used to determine the role of mast cell chymase in COL4A3 degradation. Patients with cystic fibrosis (CF, n=14) and CF with allergic broncho-pulmonary aspergillosis (ABPA, n=9) as well as severe allergic, uncontrolled asthmatics (n=19) were tested for COL4A3 degradation. Omalizumab (anti-IgE) treatment was assessed by the Asthma Control Test. RESULTS Serum levels of C4Ma3 were increased in asthma in adults and children alike and linked to a more severe, exacerbating allergic asthma phenotype. In an experimental asthma mouse model, C4Ma3 was dependent on mast cell chymase. Serum C4Ma3 was significantly elevated in CF plus ABPA and at baseline predicted the success of the anti-IgE therapy in allergic, uncontrolled asthmatics (diagnostic odds ratio 31.5). CONCLUSION C4Ma3 level depend on lung mast cell chymase and are increased in a severe, exacerbating allergic asthma phenotype. C4Ma3 may serve as a novel biomarker to predict anti-IgE therapy response

    Late onset of injection site reactions after vaccination with the 13-valent pneumococcal conjugate vaccine in adult study populations

    No full text
    Injection site reactions (ISRs; redness, swelling and pain) commonly occur within 1–2 days after vaccination. After administration of toxoid vaccines including diphtheria toxoid, a later onset of ISRs has also been observed. As the serotype capsular polysaccharides in the 13-valent pneumococcal conjugate vaccine (PCV13) are conjugated to cross-reactive material 197 (CRM197), a nontoxic variant of diphtheria toxin, the onset of ISRs over 14 days was explored in 8 adult studies with 19 cohorts. Subjects received PCV13 with aluminum phosphate (AlPO4, n = 5667) or without AlPO4 (n = 304); 1097 subjects received 23-valent pneumococcal polysaccharide vaccine (PPSV23). Late ISRs with onset between days 6–14 were observed in 8/8 cohorts aged ≥65 years after PCV13 with AlPO4 (incidence across cohorts for redness, 2.3%-19.6%; swelling, 0.9%-10.8%; pain, 1.6%-10.0%) and in 1/1 cohort after PCV13 without AlPO4 (redness 10.5%; swelling 7.5%; pain 12.3%); and in 2/4 cohorts aged 50 to 64 years after PCV13 (redness 3.1%-4.8%; swelling 1.0%-3.2%; pain 3.7%-5%). Late ISRs were not generally observed in 1/1 cohort aged 18 to 49 years after PCV13; in 2/2 cohorts aged ≥53 years after PCV13 revaccination; and in 3/3 cohorts aged ≥60 years who received PPSV23, which does not contain CRM197. Post hoc analysis demonstrated numerically higher pneumococcal immune responses in subgroups with late ISRs versus those without. In conclusion, causality of late ISRs is likely multifactorial, with age and the PCV13 carrier protein CRM197 potentially associated. AlPO4, a vaccine adjuvant, did not appear causally related. Observations do not affect the favorable risk-benefit profile of PCV13

    Immunogenicity, Safety, and Tolerability of 13-Valent Pneumococcal Conjugate Vaccine Followed by 23-Valent Pneumococcal Polysaccharide Vaccine in Recipients of Allogeneic Hematopoietic Stem Cell Transplant Aged >= 2 Years: An Open-Label Study

    No full text
    BACKGROUND: Life-threatening Streptococcus pneumoniae infections often occur after hematopoietic stem cell transplant (HSCT); vaccination is important for prevention. METHODS: In an open-label study, patients (n = 251) 3-6 months after allogeneic HSCT received 3 doses of 13-valent pneumococcal conjugate vaccine (PCV13) at 1-month intervals, a fourth dose 6 months later, and 1 dose of 23-valent pneumococcal polysaccharide vaccine (PPSV23) 1 month later. Immunogenicity at prespecified time points and vaccine safety were assessed. RESULTS: In the evaluable immunogenicity population (N = 216; mean age, 37.8 years), geometric mean fold rises (GMFRs) of immunoglobulin G geometric mean concentrations from baseline to postdose 3 showed significant increases in antibody levels across all PCV13 serotypes (GMFR range, 2.99-23.85; 95% confidence interval lower limit, >1); there were significant declines over the next 6 months, significant increases from predose 4 to postdose 4 (GMFR range, 3.00-6.97), and little change after PPSV23 (GMFR range, 0.86-1.12). Local and systemic reactions were more frequent after dose 4. Six patients experienced serious adverse events possibly related to PCV13 (facial diplegia, injection-site erythema and pyrexia, autoimmune hemolytic anemia, and suspected lack of vaccine efficacy after dose 3 leading to pneumococcal infection), PCV13 and PPSV23 (Guillain-Barré syndrome), or PPSV23 (cellulitis). There were 14 deaths, none related to study vaccines. CONCLUSIONS: A 3-dose PCV13 regimen followed by a booster dose may be required to protect against pneumococcal disease in HSCT recipients. Dose 4 was associated with increased local and systemic reactions, but the overall safety profile of a 4-dose regimen was considered acceptable. CLINICAL TRIALS REGISTRATION: NCT00980655.status: publishe
    corecore