96 research outputs found

    Probing folded and unfolded states of outer membrane protein a with steady-state and time-resolved tryptophan fluorescence

    Get PDF
    Steady-state and time-resolved fluorescence measurements on each of five native tryptophan residues in full-length and truncated variants of E. coli outer-membrane protein A (OmpA) have been made in folded and denatured states. Tryptophan singlet excited-state lifetimes are multiexponential and vary among the residues. In addition, substantial increases in excited-state lifetimes accompany OmpA folding, with longer lifetimes in micelles than in phospholipid bilayers. This finding suggests that the Trp environments of OmpA folded in micelles and phospholipid bilayers are different. Measurements of Trp fluorescence decay kinetics with full-length OmpA folded in brominated lipid vesicles reveal that W102 is the most distant fluorophore from the hydrocarbon core, while W7 is the closest. Steady-state and time-resolved polarized fluorescence measurements indicate reduced Trp mobility when OmpA is folded in a micelle, and even lower mobility when the protein is folded in a bilayer. The fluorescence properties of truncated OmpA, in which the soluble periplasmic domain is removed, only modestly differ from those of the full-length form, suggesting similar folded structures for the two forms under these conditions

    Consistent Pulmonary and Systemic Responses from Inhalation of Fine Concentrated Ambient Particles: Roles of Rat Strains Used and Physicochemical Properties

    Get PDF
    Several studies have reported health effects of concentrated ambient particles (CAP) in rodents and humans; however, toxicity end points in rodents have provided inconsistent results. In 2000 we conducted six 1-day exposure studies where spontaneously hypertensive (SH) rats were exposed to filtered air or CAPs (≤ 2.5 μm, 1,138–1,765 μg/m(3)) for 4 hr (analyzed 1–3 hr afterward). In seven 2-day exposure studies in 2001, SH and Wistar Kyoto (WKY) rats were exposed to filtered air or CAP (≤ 2.5 μm, 144–2,758 μg/m(3)) for 4 hr/day × 2 days (analyzed 1 day afterward). Despite consistent and high CAP concentrations in the 1-day exposure studies, no biologic effects were noted. The exposure concentrations varied among the seven 2-day exposure studies. Except in the first study when CAP concentration was highest, lavageable total cells and macrophages decreased and neutrophils increased in WKY rats. SH rats demonstrated a consistent increase of lavage fluid γ -glutamyltransferase activity and plasma fibrinogen. Inspiratory and expiratory times increased in SH but not in WKY rats. Significant correlations were found between CAP mass (microgram per cubic meter) and sulfate, organic carbon, or zinc. No biologic effects correlated with CAP mass. Despite low chamber mass in the last six of seven 2-day exposure studies, the levels of zinc, copper, and aluminum were enriched severalfold, and organic carbon was increased to some extent when expressed per milligram of CAP. Biologic effects were evident in those six studies. These studies demonstrate a pattern of rat strain–specific pulmonary and systemic effects that are not linked to high mass but appear to be dependent on CAP chemical composition

    Vascular and Cardiac Impairments in Rats Inhaling Ozone and Diesel Exhaust Particles

    Get PDF
    BackgroundMechanisms of cardiovascular injuries from exposure to gas and particulate air pollutants are unknown.ObjectiveWe sought to determine whether episodic exposure of rats to ozone or diesel exhaust particles (DEP) causes differential cardiovascular impairments that are exacerbated by ozone plus DEP.Methods and resultsMale Wistar Kyoto rats (10–12 weeks of age) were exposed to air, ozone (0.4 ppm), DEP (2.1 mg/m3), or ozone (0.38 ppm) + DEP (2.2 mg/m3) for 5 hr/day, 1 day/week for 16 weeks, or to air, ozone (0.51 or 1.0 ppm), or DEP (1.9 mg/m3) for 5 hr/day for 2 days. At the end of each exposure period, we examined pulmonary and cardiovascular biomarkers of injury. In the 16-week study, we observed mild pulmonary pathology in the ozone, DEP, and ozone + DEP exposure groups, a slight decrease in circulating lymphocytes in the ozone and DEP groups, and decreased platelets in the DEP group. After 16 weeks of exposure, mRNA biomarkers of oxidative stress (hemeoxygenase-1), thrombosis (tissue factor, plasminogen activator inhibitor-1, tissue plasminogen activator, and von Willebrand factor), vasoconstriction (endothelin-1, endothelin receptors A and B, endothelial NO synthase) and proteolysis [matrix metalloprotease (MMP)-2, MMP-3, and tissue inhibitor of matrix metalloprotease-2] were increased by DEP and/or ozone in the aorta, but not in the heart. Aortic LOX-1 (lectin-like oxidized low-density lipoprotein receptor-1) mRNA and protein increased after ozone exposure, and LOX-1 protein increased after exposure to ozone + DEP. RAGE (receptor for advanced glycation end products) mRNA increased in the ozone + DEP group. Exposure to ozone or DEP depleted cardiac mitochondrial phospholipid fatty acids (DEP > ozone). The combined effect of ozone and DEP exposure was less pronounced than exposure to either pollutant alone. Exposure to ozone or DEP for 2 days (acute) caused mild changes in the aorta.ConclusionsIn animals exposed to ozone or DEP alone for 16 weeks, we observed elevated biomarkers of vascular impairments in the aorta, with the loss of phospholipid fatty acids in myocardial mitochondria. We conclude that there is a possible role of oxidized lipids and protein through LOX-1 and/or RAGE signaling

    FORUM:Remote testing for psychological and physiological acoustics

    Get PDF
    Acoustics research involving human participants typically takes place in specialized laboratory settings. Listening studies, for example, may present controlled sounds using calibrated transducers in sound-attenuating or anechoic chambers. In contrast, remote testing takes place outside of the laboratory in everyday settings (e.g., participants' homes). Remote testing could provide greater access to participants, larger sample sizes, and opportunities to characterize performance in typical listening environments at the cost of reduced control of environmental conditions, less precise calibration, and inconsistency in attentional state and/or response behaviors from relatively smaller sample sizes and unintuitive experimental tasks. The Acoustical Society of America Technical Committee on Psychological and Physiological Acoustics launched the Task Force on Remote Testing (https://tcppasa.org/remotetesting/) in May 2020 with goals of surveying approaches and platforms available to support remote testing and identifying challenges and considerations for prospective investigators. The results of this task force survey were made available online in the form of a set of Wiki pages and summarized in this report. This report outlines the state-of-the-art of remote testing in auditory-related research as of August 2021, which is based on the Wiki and a literature search of papers published in this area since 2020, and provides three case studies to demonstrate feasibility during practice

    The Role of Particulate Matter-Associated Zinc in Cardiac Injury in Rats

    Get PDF
    Background: Exposure to particulate matter (PM) has been associated with increased cardiovascular morbidity; however, causative components are unknown. Zinc is a major element detected at high levels in urban air.Objective We investigated the role of PM-associated zinc in cardiac injury. Methods: We repeatedly exposed 12- to 14-week-old male Wistar Kyoto rats intratracheally (1×/week for 8 or16 weeks) to a) saline (control); b) PM having no soluble zinc (Mount St. Helens ash, MSH); or c) whole-combustion PM suspension containing 14.5 μg/mg of water-soluble zinc at high dose (PM-HD) and d ) low dose (PM-LD), e) the aqueous fraction of this suspension (14.5 μg/mg of soluble zinc) (PM-L), or f ) zinc sulfate (rats exposed for 8 weeks received double the concentration of all PM components of rats exposed for 16 weeks). Results: Pulmonary inflammation was apparent in all exposure groups when compared with saline (8 weeks greater than 16 weeks). PM with or without zinc, or with zinc alone caused small increases in focal subepicardial inflammation, degeneration, and fibrosis. Lesions were not detected in controls at 8 weeks but were noted at 16 weeks. We analyzed mitochondrial DNA damage using quantitative polymerase chain reaction and found that all groups except MSH caused varying degrees of damage relative to control. Total cardiac aconitase activity was inhibited in rats receiving soluble zinc. Expression array analysis of heart tissue revealed modest changes in mRNA for genes involved in signaling, ion channels function, oxidative stress, mitochondrial fatty acid metabolism, and cell cycle regulation in zinc but not in MSH-exposed rats. Conclusion: These results suggest that water-soluble PM-associated zinc may be one of the causal components involved in PM cardiac effects

    One-Month Diesel Exhaust Inhalation Produces Hypertensive Gene Expression Pattern in Healthy Rats

    Get PDF
    BackgroundExposure to diesel exhaust (DE) is linked to vasoconstriction, endothelial dysfunction, and myocardial ischemia in compromised individuals.ObjectiveWe hypothesized that DE inhalation would cause greater inflammation, hematologic alterations, and cardiac molecular impairment in spontaneously hypertensive (SH) rats than in healthy Wistar Kyoto (WKY) rats.Methods and resultsMale rats (12–14 weeks of age) were exposed to air or DE from a 30-kW Deutz engine at 500 or 2,000 μg/m3, 4 hr/day, 5 days/week for 4 weeks. Neutrophilic influx was noted in the lung lavage fluid of both strains, but injury markers were minimally changed. Particle-laden macrophages were apparent histologically in DE-exposed rats. Lower baseline cardiac anti-oxidant enzyme activities were present in SH than in WKY rats; however, no DE effects were noted. Cardiac mitochondrial aconitase activity decreased after DE exposure in both strains. Electron microscopy indicated abnormalities in cardiac mitochondria of control SH but no DE effects. Gene expression profiling demonstrated alterations in 377 genes by DE in WKY but none in SH rats. The direction of DE-induced changes in WKY mimicked expression pattern of control SH rats without DE. Most genes affected by DE were down-regulated in WKY. The same genes were down-regulated in SH without DE producing a hypertensive-like expression pattern. The down-regulated genes included those that regulate compensatory response, matrix metabolism, mitochondrial function, and oxidative stress response. No up-regulation of inflammatory genes was noted.ConclusionsWe provide the evidence that DE inhalation produces a hypertensive-like cardiac gene expression pattern associated with mitochondrial oxidative stress in healthy rats

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
    corecore