28 research outputs found

    Recent translational research: microarray expression profiling of breast cancer – beyond classification and prognostic markers?

    Get PDF
    Genomic expression profiling has greatly improved our ability to subclassify human breast cancers according to shared molecular characteristics and clinical behavior. The logical next question is whether this technology will be similarly useful for identifying the dominant signaling pathways that drive tumor initiation and progression within each breast cancer subtype. A major challenge will be to integrate data generated from the experimental manipulation of model systems with expression profiles obtained from primary tumors. We highlight some recent progress and discuss several obstacles in the use of expression profiling to identify pathway signatures in human breast cancer

    HER-2 overexpression differentially alters transforming growth factor-β responses in luminal versus mesenchymal human breast cancer cells

    Get PDF
    INTRODUCTION: Amplification of the HER-2 receptor tyrosine kinase has been implicated in the pathogenesis and aggressive behavior of approximately 25% of invasive human breast cancers. Clinical and experimental evidence suggest that aberrant HER-2 signaling contributes to tumor initiation and disease progression. Transforming growth factor beta (TGF-β) is the dominant factor opposing growth stimulatory factors and early oncogene activation in many tissues, including the mammary gland. Thus, to better understand the mechanisms by which HER-2 overexpression promotes the early stages of breast cancer, we directly assayed the cellular and molecular effects of TGF-β1 on breast cancer cells in the presence or absence of overexpressed HER-2. METHODS: Cell proliferation assays were used to determine the effect of TGF-β on the growth of breast cancer cells with normal or high level expression of HER-2. Affymetrix microarrays combined with Northern and western blot analysis were used to monitor the transcriptional responses to exogenous TGF-β1 in luminal and mesenchymal-like breast cancer cells. The activity of the core TGF-β signaling pathway was assessed using TGF-β1 binding assays, phospho-specific Smad antibodies, immunofluorescent staining of Smad and Smad DNA binding assays. RESULTS: We demonstrate that cells engineered to over-express HER-2 are resistant to the anti-proliferative effect of TGF-β1. HER-2 overexpression profoundly diminishes the transcriptional responses induced by TGF-β in the luminal MCF-7 breast cancer cell line and prevents target gene induction by a novel mechanism that does not involve the abrogation of Smad nuclear accumulation, DNA binding or changes in c-myc repression. Conversely, HER-2 overexpression in the context of the mesenchymal MDA-MB-231 breast cell line potentiated the TGF-β induced pro-invasive and pro-metastatic gene signature. CONCLUSION: HER-2 overexpression promotes the growth and malignancy of mammary epithelial cells, in part, by conferring resistance to the growth inhibitory effects of TGF-β. In contrast, HER-2 and TGF-β signaling pathways can cooperate to promote especially aggressive disease behavior in the context of a highly invasive breast tumor model

    Clinical evaluation of BCL-2/XL levels pre- and post- HER2-targeted therapy.

    No full text
    Our previous pre-clinical work defined BCL-2 induction as a critical component of the adaptive response to lapatinib-mediated inhibition of HER2. To determine whether a similar BCL-2 upregulation occurs in lapatinib-treated patients, we evaluated gene expression within tumor biopsies, collected before and after lapatinib or trastuzumab treatment, from the TRIO-B-07 clinical trial (NCT#00769470). We detected BCL2 mRNA upregulation in both HER2+/ER- as well as HER2+/ER+ patient tumors treated with lapatinib or trastuzumab. To address whether mRNA expression correlated with protein expression, we evaluated pre- and post-treatment tumors for BCL-2 via immunohistochemistry. Despite BCL2 mRNA upregulation within HER2+/ER- tumors, BCL-2 protein levels were undetectable in most of the lapatinib- or trastuzumab-treated HER2+/ER- tumors. BCL-2 upregulation was evident within the majority of lapatinib-treated HER2+/ER+ tumors and was often coupled with increased ER expression and decreased proliferation. Comparable BCL-2 upregulation was not observed within the trastuzumab-treated HER2+/ER+ tumors. Together, these results provide clinical validation of the BCL-2 induction associated with the adaptive response to lapatinib and support evaluation of BCL-2 inhibitors within the context of lapatinib and other HER2-targeted receptor tyrosine kinase inhibitors

    A collagen-remodeling gene signature regulated by TGF-β signaling is associated with metastasis and poor survival in serous ovarian cancer.

    No full text
    PurposeTo elucidate molecular pathways contributing to metastatic cancer progression and poor clinical outcome in serous ovarian cancer.Experimental designPoor survival signatures from three different serous ovarian cancer datasets were compared and a common set of genes was identified. The predictive value of this gene signature was validated in independent datasets. The expression of the signature genes was evaluated in primary, metastatic, and/or recurrent cancers using quantitative PCR and in situ hybridization. Alterations in gene expression by TGF-β1 and functional consequences of loss of COL11A1 were evaluated using pharmacologic and knockdown approaches, respectively.ResultsWe identified and validated a 10-gene signature (AEBP1, COL11A1, COL5A1, COL6A2, LOX, POSTN, SNAI2, THBS2, TIMP3, and VCAN) that is associated with poor overall survival (OS) in patients with high-grade serous ovarian cancer. The signature genes encode extracellular matrix proteins involved in collagen remodeling. Expression of the signature genes is regulated by TGF-β1 signaling and is enriched in metastases in comparison with primary ovarian tumors. We demonstrate that levels of COL11A1, one of the signature genes, continuously increase during ovarian cancer disease progression, with the highest expression in recurrent metastases. Knockdown of COL11A1 decreases in vitro cell migration, invasion, and tumor progression in mice.ConclusionOur findings suggest that collagen-remodeling genes regulated by TGF-β1 signaling promote metastasis and contribute to poor OS in patients with serous ovarian cancer. Our 10-gene signature has both predictive value and biologic relevance and thus may be useful as a therapeutic target

    The HSP90 inhibitor NVP-AUY922 potently inhibits non-small cell lung cancer growth

    No full text
    Heat shock protein 90 (HSP90) is involved in protein folding and functions as a chaperone for client proteins, many of which are important in non-small cell lung cancer (NSCLC) pathogenesis. We sought to define effects of the HSP90 inhibitor NVP-AUY922 in NSCLC cell lines, and identify predictors of response by in vitro and in vivo evaluation. NVP-AUY922 potently inhibited growth in all 41 NSCLC cell lines evaluated in vitro with IC50 < 100 nM. In 36 lines, IC100 (complete inhibition of proliferation) was below 40 nM. Greatest sensitivity was in lines with low baseline HSP70 protein levels. In vitro comparison of gene expression before and after NVP-AUY922 exposure demonstrated consistent changes in expression of genes involved in a wide range of cellular functions, including consistently decreased expression of dihydrofolate reductase after exposure. Expression of the co-chaperone AHA1 increased in response to exposure, and this effect was disproportionately seen in less sensitive lines. NVP-AUY922 slowed growth of A549 (KRAS mutant) xenografts, and achieved tumor stability and decreased epidermal growth factor receptor (EGFR) protein expression in H1975 xenografts, a model harboring a sensitizing and a resistance mutation for EGFR tyrosine kinase inhibitors in the EGFR gene. This impressive preclinical efficacy in a broad range of NSCLC cell lines led to clinical evaluation of NVP-AUY922 in NSCLC patients with tumors bearing known driver mutations as well as tumors without such abnormalities. An ongoing phase II NSCLC trial will incorporate correlative data to confirm our observations and guide further development of NVP-AUY922 in NSCLC. Word Count: 249 of (max 250
    corecore