8 research outputs found

    Genotype-Specific ECG-Based Risk Stratification Approaches in Patients With Long-QT Syndrome.

    Get PDF
    Background Congenital long-QT syndrome (LQTS) is a major cause of sudden cardiac death (SCD) in young individuals, calling for sophisticated risk assessment. Risk stratification, however, is challenging as the individual arrhythmic risk varies pronouncedly, even in individuals carrying the same variant. Materials and Methods In this study, we aimed to assess the association of different electrical parameters with the genotype and the symptoms in patients with LQTS. In addition to the heart-rate corrected QT interval (QTc), markers for regional electrical heterogeneity, such as QT dispersion (QTmax-QTmin in all ECG leads) and delta Tpeak/end (Tpeak/end V5 - Tpeak/end V2), were assessed in the 12-lead ECG at rest and during exercise testing. Results QTc at rest was significantly longer in symptomatic than asymptomatic patients with LQT2 (493.4 ms ± 46.5 ms vs. 419.5 ms ± 28.6 ms, p = 0.004), but surprisingly not associated with symptoms in LQT1. In contrast, post-exercise QTc (minute 4 of recovery) was significantly longer in symptomatic than asymptomatic patients with LQT1 (486.5 ms ± 7.0 ms vs. 463.3 ms ± 16.3 ms, p = 0.04), while no such difference was observed in patients with LQT2. Enhanced delta Tpeak/end and QT dispersion were only associated with symptoms in LQT1 (delta Tpeak/end 19.0 ms ± 18.1 ms vs. -4.0 ms ± 4.4 ms, p = 0.02; QT-dispersion: 54.3 ms ± 10.2 ms vs. 31.4 ms ± 10.4 ms, p = 0.01), but not in LQT2. Delta Tpeak/end was particularly discriminative after exercise, where all symptomatic patients with LQT1 had positive and all asymptomatic LQT1 patients had negative values (11.8 ± 7.9 ms vs. -7.5 ± 1.7 ms, p = 0.003). Conclusion Different electrical parameters can distinguish between symptomatic and asymptomatic patients in different genetic forms of LQTS. While the classical "QTc at rest" was only associated with symptoms in LQT2, post-exercise QTc helped distinguish between symptomatic and asymptomatic patients with LQT1. Enhanced regional electrical heterogeneity was only associated with symptoms in LQT1, but not in LQT2. Our findings indicate that genotype-specific risk stratification approaches based on electrical parameters could help to optimize risk assessment in LQTS

    Genotype-Specific ECG-Based Risk Stratification Approaches in Patients With Long-QT Syndrome

    Get PDF
    BackgroundCongenital long-QT syndrome (LQTS) is a major cause of sudden cardiac death (SCD) in young individuals, calling for sophisticated risk assessment. Risk stratification, however, is challenging as the individual arrhythmic risk varies pronouncedly, even in individuals carrying the same variant.Materials and MethodsIn this study, we aimed to assess the association of different electrical parameters with the genotype and the symptoms in patients with LQTS. In addition to the heart-rate corrected QT interval (QTc), markers for regional electrical heterogeneity, such as QT dispersion (QTmax-QTmin in all ECG leads) and delta Tpeak/end (Tpeak/end V5 – Tpeak/end V2), were assessed in the 12-lead ECG at rest and during exercise testing.ResultsQTc at rest was significantly longer in symptomatic than asymptomatic patients with LQT2 (493.4 ms ± 46.5 ms vs. 419.5 ms ± 28.6 ms, p = 0.004), but surprisingly not associated with symptoms in LQT1. In contrast, post-exercise QTc (minute 4 of recovery) was significantly longer in symptomatic than asymptomatic patients with LQT1 (486.5 ms ± 7.0 ms vs. 463.3 ms ± 16.3 ms, p = 0.04), while no such difference was observed in patients with LQT2. Enhanced delta Tpeak/end and QT dispersion were only associated with symptoms in LQT1 (delta Tpeak/end 19.0 ms ± 18.1 ms vs. −4.0 ms ± 4.4 ms, p = 0.02; QT-dispersion: 54.3 ms ± 10.2 ms vs. 31.4 ms ± 10.4 ms, p = 0.01), but not in LQT2. Delta Tpeak/end was particularly discriminative after exercise, where all symptomatic patients with LQT1 had positive and all asymptomatic LQT1 patients had negative values (11.8 ± 7.9 ms vs. −7.5 ± 1.7 ms, p = 0.003).ConclusionDifferent electrical parameters can distinguish between symptomatic and asymptomatic patients in different genetic forms of LQTS. While the classical “QTc at rest” was only associated with symptoms in LQT2, post-exercise QTc helped distinguish between symptomatic and asymptomatic patients with LQT1. Enhanced regional electrical heterogeneity was only associated with symptoms in LQT1, but not in LQT2. Our findings indicate that genotype-specific risk stratification approaches based on electrical parameters could help to optimize risk assessment in LQTS

    Prosthetic Valve Endocarditis due to Actinomyces neuii Successfully Treated with Antibiotic Therapy ▿

    No full text
    Endocarditis due to Actinomyces neuii is a rare disease, with only 14 reported cases. Recently, A. neuii was added to the list of species implicated in endocarditis of native valves. We now report the first case of prosthetic valve endocarditis and the first successful control of endocarditis caused by this organism without surgical intervention

    Determination of aortic stiffness using 4D flow cardiovascular magnetic resonance - a population-based study

    No full text
    Abstract Background Increased aortic stiffness is an independent predictor of cardiovascular disease. Optimal measurement is highly beneficial for the detection of atherosclerosis and the management of patients at risk. Thus, it was our purpose to selectively measure aortic stiffness using a novel imaging method and to provide reference values from a population-based study. Methods One hundred twenty six inhabitants of Freiburg, Germany, between 20 and 80 years prospectively underwent 3 Tesla cardiovascular magnetic resonance (CMR) of the thoracic aorta. 4D flow CMR (spatial/temporal resolution 2mm3/20ms) was executed to calculate aortic pulse wave velocity (PWV) in m/s using dedicated software. In addition, we calculated distensibility coefficients (DC) using 2D CINE CMR imaging of the ascending (AAo) and descending aorta (DAo). Segmental aortic diameter and thickness of aortic plaques were determined by 3D T1 weighted CMR (spatial resolution 1mm3). Results PWV increased from 4.93 ± 0.54 m/s in 20–30 year-old to 8.06 ± 1.03 m/s in 70–80 year-old subjects. PWV was significantly lower in women compared to men (p < 0.0001). Increased blood pressure (systolic r = 0.36, p < 0.0001; diastolic r = 0.33, p = 0.0001; mean arterial pressure r = 0.37, p < 0.0001) correlated with PWV after adjustment for age and gender. Finally, PWV increased with increasing diameter of the aorta (ascending aorta r = 0.20, p = 0.026; aortic arch r = 0.24, p = 0.009; descending aorta r = 0.26, p = 0.004). Correlation of PWV and DC of the AAo and DAo or the mean of both was high (r = 0.69, r = 0.68, r = 0.73; p < 0.001). Conclusions 4D flow CMR was successfully applied to calculate aortic PWV and thus aortic stiffness. Findings showed a high correlation with distensibility coefficients representing local compliance of the aorta. Our novel method and reference data for PWV may provide a reliable biomarker for the identification of patients with underlying cardiovascular disease and optimal guidance of future treatment in studies or clinical routine

    Age-related changes of right atrial morphology and inflow pattern assessed using 4D flow cardiovascular magnetic resonance: results of a population-based study

    No full text
    Abstract Background To assess age-related changes of blood flow and geometry of the caval veins and right atrium (RA) using 4D flow cardiovascular magnetic resonance (CMR) data obtained in a population-based study. Methods An age-stratified sample (n = 126) of the population of the city of Freiburg, Germany, underwent transthoracic echocardiography and electrocardiogram-triggered and navigator-gated 4D flow CMR at 3 Tesla covering the caval veins and right heart. Study participants were divided into three age groups (1:20–39; 2:40–59; and 3:60–80 years of age). Analysis planes were placed in the superior and inferior caval vein. Subsequently, RA morphology and three-dimensional blood inflow pattern was assessed. Results Blood flow of the RA showed a clockwise rotating helix without signs of turbulence in younger subjects. By contrast, such rotation was absent in 12 subjects of group 3 and turbulences were significantly more frequent (p < 0.001). We observed an age-related shift of the caval vein axis. While the outlets of the superior and inferior caval veins were facing each other in group 1, lateralization occurred in older subjects (p < 0.001). A convergence of axes was observed from lateral view with facing axes in older subjects (p = 0.004). Finally, mean and peak systolic blood flow in the caval veins decreased with age (group 3 < 2 < 1). Conclusions We have provided reference values of 4D CMR blood flow for different age groups and demonstrated the significant impact of age on hemodynamics of the RA inflow tract. This effect of aging should be taken into account when assessing pathologic conditions of the heart in the future
    corecore