32 research outputs found

    Environmental Dimensionality Controls the Interaction of Phagocytes with the Pathogenic Fungi Aspergillus fumigatus and Candida albicans

    Get PDF
    The fungal pathogens Aspergillus fumigatus and Candida albicans are major health threats for immune-compromised patients. Normally, macrophages and neutrophil granulocytes phagocytose inhaled Aspergillus conidia in the two-dimensional (2-D) environment of the alveolar lumen or Candida growing in tissue microabscesses, which are composed of a three-dimensional (3-D) extracellular matrix. However, neither the cellular dynamics, the per-cell efficiency, the outcome of this interaction, nor the environmental impact on this process are known. Live imaging shows that the interaction of phagocytes with Aspergillus or Candida in 2-D liquid cultures or 3-D collagen environments is a dynamic process that includes phagocytosis, dragging, or the mere touching of fungal elements. Neutrophils and alveolar macrophages efficiently phagocytosed or dragged Aspergillus conidia in 2-D, while in 3-D their function was severely impaired. The reverse was found for phagocytosis of Candida. The phagocytosis rate was very low in 2-D, while in 3-D most neutrophils internalized multiple yeasts. In competitive assays, neutrophils primarily incorporated Aspergillus conidia in 2-D and Candida yeasts in 3-D despite frequent touching of the other pathogen. Thus, phagocytes show activity best in the environment where a pathogen is naturally encountered. This could explain why ā€œdelocalizedā€ Aspergillus infections such as hematogeneous spread are almost uncontrollable diseases, even in immunocompetent individuals

    Siderophore-Mediated Zinc Acquisition Enhances Enterobacterial Colonization of the Inflamed Gut

    Get PDF
    Zinc is an essential cofactor for bacterial metabolism, and many Enterobacteriaceae express the zinc transporters ZnuABC and ZupT to acquire this metal in the host. However, the probiotic bacterium Escherichia coli Nissle 1917 (or ā€œNissleā€) exhibits appreciable growth in zinc-limited media even when these transporters are deleted. Here, we show that Nissle utilizes the siderophore yersiniabactin as a zincophore, enabling Nissle to grow in zinc-limited media, to tolerate calprotectin-mediated zinc sequestration, and to thrive in the inflamed gut. We also show that yersiniabactinā€™s affinity for iron or zinc changes in a pH-dependent manner, with increased relative zinc binding as the pH increases. Thus, our results indicate that siderophore metal affinity can be influenced by the local environment and reveal a mechanism of zinc acquisition available to commensal and pathogenic Enterobacteriaceae

    Exploiting host immunity: the Salmonella paradigm.

    No full text

    Siderophores: More than Stealing Iron

    No full text

    Siderophores: More than Stealing Iron.

    No full text
    Siderophores are small molecular iron chelators that are produced by microbes and whose most notable function is to sequester iron from the host and provide this essential metal nutrient to microbes. Recent studies have proposed additional, noncanonical roles for siderophores, including the acquisition of noniron metals and modulation of host functions. Recently, Holden et al. (V. I. Holden, P. Breen, S. Houle, C. M. Dozois, and M. A. Bachman, mBio 7:e01397-16, 2016, http://dx.doi.org/10.1128/mBio.01397-16) showed that siderophores secreted by Klebsiella pneumoniae during lung infection induce stabilization of the transcription factor HIF-1Ī±, increase the expression of proinflammatory cytokines in the lung, and promote dissemination of K. pneumoniae to the spleen. Thus, their study demonstrated novel roles for siderophores in vivo, beyond iron sequestration. The interaction of siderophores with host cells further promotes the pathogenicity of K. pneumoniae and is likely relevant for other pathogens that also secrete siderophores in the host

    Neglected gut microbiome: interactions of the non-bacterial gut microbiota with enteric pathogens

    No full text
    ABSTRACTA diverse array of commensal microorganisms inhabits the human intestinal tract. The most abundant and most studied members of this microbial community are undoubtedly bacteria. Their important role in gut physiology, defense against pathogens, and immune system education has been well documented over the last decades. However, the gut microbiome is not restricted to bacteria. It encompasses the entire breadth of microbial life: viruses, archaea, fungi, protists, and parasitic worms can also be found in the gut. While less studied than bacteria, their divergent but important roles during health and disease have become increasingly more appreciated. This review focuses on these understudied members of the gut microbiome. We will detail the composition and development of these microbial communities and will specifically highlight their functional interactions with enteric pathogens, such as species of the family Enterobacteriaceae. The interactions can be direct through physical interactions, or indirect through secreted metabolites or modulation of the immune response. We will present general concepts and specific examples of how non-bacterial gut communities modulate bacterial pathogenesis and present an outlook for future gut microbiome research that includes these communities
    corecore