23 research outputs found

    Two systems for empathy: a double dissociation between emotional and cognitive empathy in inferior frontal gyrus versus ventromedial prefrontal lesions

    Get PDF
    Recent evidence suggests that there are two possible systems for empathy: a basic emotional contagion system and a more advanced cognitive perspective-taking system. However, it is not clear whether these two systems are part of a single interacting empathy system or whether they are independent. Additionally, the neuroanatomical bases of these systems are largely unknown. In this study, we tested the hypothesis that emotional empathic abilities (involving the mirror neuron system) are distinct from those related to cognitive empathy and that the two depend on separate anatomical substrates. Subjects with lesions in the ventromedial prefrontal (VM) or inferior frontal gyrus (IFG) cortices and two control groups were assessed with measures of empathy that incorporate both cognitive and affective dimensions. The findings reveal a remarkable behavioural and anatomic double dissociation between deficits in cognitive empathy (VM) and emotional empathy (IFG). Furthermore, precise anatomical mapping of lesions revealed Brodmann area 44 to be critical for emotional empathy while areas 11 and 10 were found necessary for cognitive empathy. These findings are consistent with these cortices being different in terms of synaptic hierarchy and phylogenetic age. The pattern of empathy deficits among patients with VM and IFG lesions represents a first direct evidence of a double dissociation between emotional and cognitive empathy using the lesion method. Keywords: Emotional empathy; cognitive empathy; mirror neurons; inferior frontal gyrus; ventromedial prefrontal cortex Abbreviations: ANOVA = analysis of variance; BA = Brodmann area; EC = empathic concern scale; FS = fantasy scale; HC = healthy control; IFG = inferior frontal gyrus; IRI = Interpersonal Reactivity Index; MNS = mirror neuron system; PC = posterior lesion; PD = personal distress scale; PT = perspective-taking scale; ToM = Theory of Mind; VM = ventromedial prefrontal; WCST = Wisconsin Card Sorting Test

    Graph analysis uncovers an opposing impact of methylphenidate on connectivity patterns within default mode network sub-divisions

    No full text
    Abstract Background The Default Mode Network (DMN) is a central neural network, with recent evidence indicating that it is composed of functionally distinct sub-networks. Methylphenidate (MPH) administration has been shown before to modulate impulsive behavior, though it is not yet clear whether these effects relate to MPH-induced changes in DMN connectivity. To address this gap, we assessed the impact of MPH administration on functional connectivity patterns within and between distinct DMN sub-networks and tested putative relations to variability in sub-scales of impulsivity. Methods Fifty-five right-handed healthy adults underwent two resting-state functional MRI (rs-fMRI) scans, following acute administration of either MPH (20 mg) or placebo, via a randomized double-blind placebo-controlled design. Graph modularity analysis was implemented to fractionate the DMN into distinct sub-networks based on the impact of MPH (vs. placebo) on DMN connectivity patterns with other neural networks. Results MPH administration led to an overall decreased DMN connectivity, particularly with the auditory, cinguloopercular, and somatomotor networks, and increased connectivity with the parietomedial network. Graph analysis revealed that the DMN could be fractionated into two distinct sub-networks, with one exhibiting MPH-induced increased connectivity and the other decreased connectivity. Decreased connectivity of the DMN sub-network with the cinguloopercular network following MPH administration was associated with elevated impulsivity and non-planning impulsiveness. Conclusion Current findings highlight the intricate effects of MPH administration on DMN rs-fMRI connectivity, uncovering its opposing impact on distinct DMN sub-divisions. MPH-induced dynamics in DMN connectivity patterns with other neural networks may account for some of the effects of MPH administration on impulsive behavior
    corecore