9,835 research outputs found
HI and Cosmology: What We Need To Know
There are three distinct regimes in which radio observations of the
redshifted 21 cm line of HI can contribute directly to cosmology in unique
ways. The regimes are naturally divided by redshift, from high to low, into:
inflationary physics, the Dark Ages and reionization, and galaxy evolution and
Dark Energy. Each measurement presents its own set of technical, theoretical,
and observational challenges, making "what we need to know" not so much an
astrophysical question at this early stage as a comprehensive experimental
question. A wave of new pathfinder projects are exploring the fundamental
aspects of what we need to know (and what we should expect to learn in the
coming years) in order to achieve the goals of the Square Kilometer Array (SKA)
and beyond.Comment: From AIP Conference Proceedings, Volume 1035, 2008, "The Evolution of
Galaxies through the Neutral Hydrogen Window". 7 page
Absolute calibration of a wideband antenna and spectrometer for sky noise spectral index measurements
A new method of absolute calibration of sky noise temperature using a
three-position switched spectrometer, measurements of antenna and low noise
amplifier impedance with a vector network analyzer, and ancillary measurements
of the amplifier noise waves is described. The details of the method and its
application to accurate wideband measurements of the spectral index of the sky
noise are described and compared with other methods.Comment: 15 pages, 10 figures, published in Radio Scienc
Implications of non-feasible transformations among icosahedral orbitals
The symmetric group that permutes the six five-fold axes of an
icosahedron is introduced to go beyond the simple rotations that constitute the
icosahedral group . Owing to the correspondence , the
calculation of the Coulomb energies for the icosahedral configurations
based on the sequence can be brought
to bear on Racah's classic theory for the atomic d shell based on . Among the elements of is the kaleidoscope
operator that rotates the weight space of SO(5) by . Its use
explains some puzzling degeneracies in d^3 involving the spectroscopic terms
^2P, ^2F, ^2G and ^2H.Comment: Tentatively scheduled to appear in Physical Preview Letters Apr 5,
99. Revtex, 1 ps figur
Data management of on-line partial discharge monitoring using wireless sensor nodes integrated with a multi-agent system
On-line partial discharge monitoring has been the subject of significant research in previous years but little work has been carried out with regard to the management of on-site data. To date, on-line partial discharge monitoring within a substation has only been concerned with single plant items, so the data management problem has been minimal. As the age of plant equipment increases, so does the need for condition monitoring to ensure maximum lifespan. This paper presents an approach to the management of partial discharge data through the use of embedded monitoring techniques running on wireless sensor nodes. This method is illustrated by a case study on partial discharge monitoring data from an ageing HVDC reactor
Acidified and ultrafiltered recovered coagulants from water treatment works sludge for removal of phosphorus from wastewater
This study used a range of treated water treatment works sludge options for the removal of phosphorus (P) from primary wastewater. These options included the application of ultrafiltration for recovery of the coagulant from the sludge. The treatment performance and whole life cost (WLC) of the various recovered coagulant (RC) configurations have been considered in relation to fresh ferric sulphate (FFS). Pre-treatment of the sludge with acid followed by removal of organic and particulate contaminants using a 2kD ultrafiltration membrane resulted in a reusable coagulant that closely matched the performance FFS. Unacidified RC showed 53% of the phosphorus removal efficiency of FFS, at a dose of 20 mg/L as Fe and a contact time of 90 min. A longer contact time of 8 h improved performance to 85% of FFS. P removal at the shorter contact time improved to 88% relative to FFS by pre-acidifying the sludge to pH 2, using an acid molar ratio of 5.2:1 mol H+:Fe. Analysis of the removal of P showed that rapid phosphate precipitation accounted for >65% of removal with FFS. However, for the acidified RC a slower adsorption mechanism dominated; this was accelerated at a lower pH. A cost-benefit analysis showed that relative to dosing FFS and disposing waterworks sludge to land, the 20 year WLC was halved by transporting acidified or unacidified sludge up to 80 km for reuse in wastewater treatment. A maximum inter-site distance was determined to be 240 km above the current disposal route at current prices. Further savings could be made if longer contact times were available to allow greater P removal with unacidified RC
Occlusion-Robust MVO: Multimotion Estimation Through Occlusion Via Motion Closure
Visual motion estimation is an integral and well-studied challenge in
autonomous navigation. Recent work has focused on addressing multimotion
estimation, which is especially challenging in highly dynamic environments.
Such environments not only comprise multiple, complex motions but also tend to
exhibit significant occlusion.
Previous work in object tracking focuses on maintaining the integrity of
object tracks but usually relies on specific appearance-based descriptors or
constrained motion models. These approaches are very effective in specific
applications but do not generalize to the full multimotion estimation problem.
This paper presents a pipeline for estimating multiple motions, including the
camera egomotion, in the presence of occlusions. This approach uses an
expressive motion prior to estimate the SE (3) trajectory of every motion in
the scene, even during temporary occlusions, and identify the reappearance of
motions through motion closure. The performance of this occlusion-robust
multimotion visual odometry (MVO) pipeline is evaluated on real-world data and
the Oxford Multimotion Dataset.Comment: To appear at the 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). An earlier version of this work first
appeared at the Long-term Human Motion Planning Workshop (ICRA 2019). 8
pages, 5 figures. Video available at
https://www.youtube.com/watch?v=o_N71AA6FR
New methodology for assessing the probability of contaminating Mars
Methodology is proposed to assess the probability that the planet Mars will be contaminated by terrestrial microorganisms aboard a spacecraft. The present NASA methods are extended to permit utilization of detailed information on microbial characteristics, the lethality of release and transport mechanisms, and of other information about the Martian environment. Different types of microbial release are distinguished, and for each release mechanism a probability of growth is computed. Using this new methodology, an assessment was carried out for the 1975 Viking landings on Mars. The resulting probability of contamination for each Viking lander is 6 x 10 to the -6 power, and is amenable to revision as additional information becomes available
- …
