3 research outputs found

    Low-momentum pion enhancement from schematic hadronization of a gluon-saturated initial state

    Get PDF
    We study the particle production in the early stage of the ultrarelativistic heavy-ion collisions. To this end the Boltzmann kinetic equations for gluons and pions with elastic rescattering are considered together with a simple model for the parton-hadron conversion process (hadronisation). It is shown that the overpopulation of the gluon phase space in the initial state leads to an intermediate stage of Bose enhancement in the low-momentum gluon sector which due to the gluon-pion conversion process is then reflected in the final distribution function of pions. This pattern is very similar to the experimental finding of a low-momentum pion enhancement in the ALICE experiment at CERN LHC. Relations to the thermal statistical model of hadron production and the phenomenon of thermal and chemical freeze-out are discussed in this context

    Assisted dynamical Schwinger effect: pair production in a pulsed bifrequent field

    Get PDF
    Electron-positron pair production by the superposition of two laser pulses with different frequencies and amplitudes is analyzed as a particular realization of the assisted dynamic Schwinger effect. It is demonstrated that, within a non-perturbative kinetic equation framework, an amplification effect is conceivable for certain parameters. When both pulses have wavelengths longer than the Compton wavelength, the residual net density of produced pairs is determined by the resultant field strength. The number of pairs starts to grow rapidly if the wavelength of the high-frequency laser component gets close to the Compton wavelength
    corecore