
Eur. Phys. J. D (2016) 70: 56
DOI: 10.1140/epjd/e2016-60517-y

Regular Article

THE EUROPEAN
PHYSICAL JOURNAL D

Assisted dynamical Schwinger effect: pair production in a pulsed
bifrequent field

Anatoly D. Panferov1, Stanislav A. Smolyansky1, Andreas Otto2,3, Burkhard Kämpfer2,3, David B. Blaschke4,5,6,a,
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Abstract. Electron-positron pair production by the superposition of two laser pulses with different fre-
quencies and amplitudes is analyzed as a particular realization of the assisted dynamic Schwinger effect.
It is demonstrated that, within a non-perturbative kinetic equation framework, an amplification effect is
conceivable for certain parameters. When both pulses have wavelengths longer than the Compton wave-
length, the residual net density of produced pairs is determined by the resultant field strength. The number
of pairs starts to grow rapidly if the wavelength of the high-frequency laser component gets close to the
Compton wavelength.

1 Introduction

The possibility of direct energy conversion processes from
a strong electromagnetic field into e−e+ pairs is one of the
curious features of quantum electrodynamics (QED) [1–3].
However, the required critical electric field strength has
the so-called Sauter-Schwinger value1 Ec ≡ m2/|e| =
1.3 × 1016 V/cm (here, m and e are the mass and the
charge of the electron, resp.) which makes it inaccessible to
direct experimental observations at present. The hope for
the observation of such processes was revived with the ad-
vent of ultra-intensity laser systems in the optical or X-ray
regimes [4]. The rapidly evolving laser technologies [5] trig-
gered repeatedly the theoretical search for suitable laser
configurations which have the potential to realize pair pro-
duction by Schwinger-type tunneling processes (for differ-
ent variants, see [6,7]). A new avenue was provided by the
dynamically assisted Schwinger effect [8,9], meaning that
the tunneling path is abbreviated by an assisting second
field, thus enhancing the originally small tunneling proba-
bility. Given this scenario, a number of dedicated investi-
gations aimed at further elaborating the prospects to find
appropriate signals of the Schwinger effect.

Because of the important implications for related ef-
fects in other fields in physics (see Refs. [10,11] for an

a e-mail: blaschke@ift.uni.wroc.pl
1 We use � = c = kB = 1 throughout this work.

overview including particle production in cosmology and
astrophysics, Hawking-Unruh radiation as well as con-
ceptional issues of vacuum definition), many investiga-
tions address either the principles of the strictly non-
perturbative pair production [12] or employ special field
models to elucidate the general features, often only by nu-
merical evaluation.

The term “assisted Schwinger effect” stands for pair
production from the vacuum under the influence of two
fields – one assisting the other. Special field models are,
for instance, particular pulses (such as the Sauter- or the
Gauss-pulse) or oscillating fields with particular envelopes
(such as Sauter- or Gauss-pulse with sub-cycle structures).
Since in a spatially homogeneous electric field the three-
momentum of a charged particle is a good quantum num-
ber which makes the mode expansion appropriate, one
often restricts oneself to such homogeneous fields. The
rationale for many models with a purely temporal depen-
dence is that counter-propagating, suitably linearly po-
larized (laser) beams [13] in the homogeneity region of
anti-nodes represent such spatially constant fields. The
account for spatial gradients is quite challenging [14,15]
and requires much more efforts.

The enhancement of Schwinger type pair production
by an assisting field has been considered already in refer-
ences [7,16–24], e.g., for

(i) a constant field plus some pulse with or without sub-
cycle structures [20];
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(ii) a superposition of two pulses without sub-cycles [21];
(iii) a superposition of two pulses with oscillating sub-

cycle structure [22–24].

In the latter case, the common envelope was taken with
a long flat-top period with short ramping and de-ramping
stages. Besides numerical examples, also the underlying
enhancement mechanism has been clarified for that special
field model: it is the shift of the relevant zero of the quasi-
particle energy in the complex time domain toward the
real axis (cf. [20,25] for other field configurations). Here we
are going to extend the considerations in references [23,24]
and study, by numerical means, some systematics of the
enhancement for a Gauss envelope. Besides the oscillation
frequencies of both fields, the temporal width of the Gauss
envelope enters as relevant new parameter related to time
scales.

Our paper is organized as follows. In Section 2 we re-
call the formal framework of the quantum kinetic equa-
tions as basis of our non-perturbative analysis. In Sec-
tion 3 we introduce the parametrization of the field model
we consider. Numerical results are presented in Section 4.
In Section 5 we give a critical discussion of the explored
parameter range w.r.t. applications, and in Section 6 we
present the summary of this work.

2 Theoretical basis

The non-perturbative consequence of the equations of mo-
tion of QED determines the vacuum effects in a given ex-
ternal, spatially homogeneous electric field with an arbi-
trary time dependence [26]. For instance, one can employ
the quantum kinetic equation [27] describing the e−e+ cre-
ation by an electric field E(t) = −∂tA(t) ≡ −Ȧ(t) with
the four-vector potential in Hamilton gauge (we use nat-
ural units with c = � = 1), Aμ(t) = (0, 0, 0, A(t)),

ḟ(p, t) =
λ(p, t)

2

t∫

t0

dt′λ(p, t′)w(p, t′) cos θ(p, t, t′), (1)

where w(p, t) = 1− 2f(p, t) is the depletion function con-
taining the dimensionless phase space distribution func-
tion per spin projection degree of freedom f(p, t) =
dN(p, t)/d3p d3x, and

λ(p, t) =
eE(t) ε⊥(p⊥)

ε2(p, t)
, (2)

is the amplitude of the vacuum transition, while

θ(p, t, t′) = 2
∫ t

t‘
dτ ε(p, τ) (3)

stands for the dynamical phase, describing the vacuum os-
cillations modulated by the external field. The quasiparti-
cle energy ε, the transverse energy ε⊥ and the longitudinal

quasiparticle momentum P are defined as:

ε(p, t) =
√

ε2(p⊥) + P 2(p‖, t), (4)

ε⊥(p⊥) =
√

m2 + p2
⊥, (5)

P (p‖, t) = p‖ − eA(t), (6)

where p⊥ = |p⊥| is the modulus of the momentum com-
ponent perpendicular to the electric field, and p‖ stands
for the momentum component parallel to E.

The integro-differential equation (1) is useful for the
low-density approximation by setting f(p, t′) → 0. For
the complete numerical evaluations of (1) an equivalent
system of ordinary differential equations is comfortable
(arguments are dropped for brevity)

ḟ =
1
2

λu, (7)

u̇ = −2εv + λ(1 − 2f), (8)
v̇ = +2εu, (9)

with u and v as auxiliary functions being related via
u2 + v2 + w2 = u2 + v2 + (1 − 2f)2 = 1. Since the modes
with momenta p decouple we have suppressed these argu-
ments here, as well as the time dependence of all quanti-
ties. Sometimes, the relation ḟ = λu/2 is useful for a field
acting a finite time only, telling that, since E(t) → 0 im-
plies λ → 0, f → const for E(t) → 0. Initial conditions at
the remote past, t0 → −∞, are u(t0) = v(t0) = f(t0) = 0.

As emphasized, e.g., in [10], a sensible quantity is
lim

t→∞ f(p, t), since the adiabatic particle number per mode
depends on the chosen basis. Accordingly, the residual pair
number density is

n = lim
t→∞ 2

∫
dp

(2π)3
f(p, t). (10)

The factor two refers to the two spin degrees of freedom
which are summed up since in a purely electric field the
spin degrees of freedom are degenerate.

Other formulations of the basic equations are conceiv-
able, e.g., by relating f to the reflection coefficient at
(above) an effective potential, where the problem’s heart
is a Riccati equation [20,25]. In such a way the equiva-
lence with a quantum mechanical scattering problem is
highlighted, where the potential is related to ε(p, t). This
makes evident that the residual phase space distribution
can, in general, obey an intricate momentum dependence.

Asymptotic methods for the solution of the kinetic
equation (1) were developed in [28,29]. There, some dif-
ficulties of applying such methods for field parameters
corresponding to the case of tunneling regime are also
discussed.

3 Field models

Only for a few cases the equations of Section 2 allow
for exact solutions. Most notable are the Schwinger field
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ESchw = const and the Sauter pulse ESaut ∝ 1/ cosh2(t/τ)
with a time scale τ . For a systematic approach to relate
features of the residual momentum distribution and the
temporal field shape, see [25]. Therefore, in most cases of
interest, one has to resort to numerical solutions. Here one
faces the problem that, for pulses with or without sub-
cycle structures, a number of parameters determine the
solution which can sensitively (often non-linearly) depend
on the location in parameter space. Therefore, suitable
approximations and estimates are very important. For in-
stance, in a WKB type analysis the locations of zeroes of ε
in the complex t plane are identified as important quan-
tities determining the dominating exponential factor for
the pair production. This also explains that pulses which
look similar on the real t axis can have strikingly different
implications since the analytic properties can be rather
distinctive. On a qualitative level, the enhanced pair pro-
duction in the assisted dynamical Schwinger effect can be
traced back to moving the relevant zeroes towards the real
axis (cf. [20]), as mentioned above.

A subject of intense previous studies [30,31] was the
Gauss pulse with sub-cycle structure or, equivalently, a
periodic field with Gaussian envelope

E(t) = E0 cos (ωt + ϕ) exp
(
− t2

2τ2

)
, (11)

A(t) = −
√

π

8
E0τ exp

(
−1

2
σ2 + iϕ

)

× erf
(

t√
2τ

− i
σ√
2

)
+ c.c., (12)

where E0 is the amplitude, ω denotes the oscillation fre-
quency and ϕ is the carrier envelope phase, which de-
termines the symmetry properties w.r.t. time reversal.
Hereafter, we put ϕ = 0. The parameter σ = ωτ char-
acterizes the number of oscillations within the pulse. For
σ > 4, the known examples [31] exhibit f(t → ∞)
at p⊥ = 0 as a strongly oscillating (in tune with τ)
function of p‖ around a bell-shaped mean, the latter
one accessible via a WKB approximation. The occur-
rence of two time scales, 1/ω and τ , allows to define
two Keldysh parameters, γω = (ω/m)(Ec/E0) and γτ =
1/(mτ)(Ec/E0). Usually, γω � 1 is attributed [32] to the
tunneling regime and can be termed dynamical Schwinger
effect.

Considering (11) and (12) as the strong pulse in the
spirit of the assisted dynamical Schwinger effect, one adds
a second weak assisting pulse with the same envelope form
but different parameters yielding an eight dimensional pa-
rameter space for the two-dimensional p⊥ − p‖ distribu-
tion. Here, the optimization theory [19,22] is certainly
very useful to search for parameters suitable for maxi-
mum amplification. Upon restricting to a narrow patch
in the parameter space one can constrain the ansatz for
the superposition of a strong and a weak pulse, each with

sub-cycles, to

E(t) = E0 {cos (ωt) + kE cos (kωωt)} e−t2/(2τ2), (13)

A(t) = −
√

π

2
E0τ ×

{
exp

(
−τ2ω2

2

)

× Re
[
erf

(
t√
2τ

+ i
τω√

2

)]

+ kE exp
(
−τ2(kωω)2

2

)

× Re
[
erf

(
t√
2τ

+ i
τkωω√

2

)] }
. (14)

In these expressions, kE ≤ 1 is the field strength frac-
tion of the amplitude of the weak pulse, and kω ≥ 1 is
the frequency ratio. The envelopes of both pulses are syn-
chronized and the carrier envelope phases are dropped,
leading to a t → −t symmetric field E(t). Thus, we are
going to quantify the assisted dynamical Schwinger effect
for moderate values of kE , kω and τ in the mildly sub-
critical regime with E0 < Ec and ω ≤ m. Having more
extreme conditions in mind, e.g. kω ≫ 1, another field
model could be more suitable, such as

E(t) � E0(1 + kE cos kωωt) × envelope (15)

and the related function A(t). Besides the Gauss envelope,
other pulse shapes and/or nonzero carrier envelope phases
may be considered in separate work. Here we will just
consider the example of the super-Gauss bifrequent field
model

En(t) = E0 {cos (ωt) + kE cos (kωωt)} e−
1
2 (t/τ)ν

. (16)

The Gauss envelope (13) is contained in (16) for the value
ν = 2.

4 Numerical results

Figure 1 shows an example for the electric field (upper
row) and the potential (lower row) of the strong, low-
frequency pulse (left column, field “1” characterized by
E0, ω, τ in (11) and (12)), the weak, high-frequency pulse
(middle column, field “2” characterized by kEE0, kωω,
τ to be used in (11) and (12) instead of E0, ω, τ) and
the superposition of both (right column, field “1+2” ac-
cording to (13) and (14)). We emphasize the much more
pronounced “roughening” of the electric field “1+2” by
“2”, while the impact on the potential looks very modest
(note the different scales of left and middle panels in the
bottom row). In Figure 3 we show the field (upper panel)
and the potential (lower row) of the super-Gauss model
in the case ν = 8 which gives the high frequency field “2”
a shape with a flat top (see, e.g., Ref. [23]) and the wings
of the combined field “1+2” show a stronger modulation.

In Figure 2 (Fig. 4) we show the residual phase space
distribution at p⊥ = 0 (upper row) and p‖ = 0 (lower row)
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Fig. 1. The time dependence of the electric field (13) (upper row) and the potential (14) (lower row) for E0 = 0.2 Ec, ω = 0.05 m,
and τ = 5/ω. Left column: the strong, low-frequency component “1” of the pulse, i.e. only the first term in curly brackets in
equations (13) and (14) corresponding to kE = 0; middle column: the weak, high-frequency component ”2” with kE = 0.25 and
kω = 10, i.e. only the second term in curly brackets in equations (13) and (14); right column: the superposition “1+2”, i.e. the
complete expressions in equations (13) and (14).

Fig. 2. Residual phase space distributions at p⊥ = 0 (upper row) and p‖ = 0 (lower row) for the fields displayed in Figure 1.
Left column: the strong, low-frequency component “1” of the pulse, i.e. only the first term in curly brackets in equations (13)
and (14) corresponding to kE = 0; middle column: the weak, high-frequency component “2” with kE = 0.25 and kω = 10, i.e.
only the second term in curly brackets in equations (13) and (14); right column: the superposition “1+2”, i.e. the complete
expressions in equations (13) and (14).
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Fig. 3. The time dependence of the super-Gauss electric field (16) (upper row) and the potential (lower row) for ν = 8,
E0 = 0.2 Ec, ω = 0.05 m, and τ = 5/ω. Left column: the strong, low-frequency component “1” of the pulse (kE = 0); middle
column: the weak, high-frequency component “2” with kE = 0.25 and kω = 10; right column: the superposition “1+2”.

for the fields displayed in Figure 1 (Fig. 3). It is obvious
that here a nonlinear parametric enhancement effect takes
place. The maximum values of the distribution function
for the bifrequent pulse “1+2” are almost two orders larger
than the corresponding values for the low-frequency pulse
“1” and almost three orders of magnitude for the high-
frequency pulse “2”. In addition, the phase space occu-
pancy for “1+2” is apparently strikingly larger. Contrary
to [23,24], one can hardly recognize a “lifting” of the p‖
distribution for field “1” by “2”: the patterns are fairly
different. In the present case, there is no “flat-top” in the
time dependence of the field envelope, but the crucial as-
pect for the observed enhancement is the dominance of
pair production in the multiphoton regime for the weak-
field, occurring for sufficiently large frequencies kωω.

This situation is not qualitatively changed for the
super-Gauss field with ν = 8 (see Fig. 3), where due to
the flattening of the envelope shape resonant-like struc-
tures appear in the distribution function for the individ-
ual pulses while the combined bifrequent pulse results in a
pair distribution function (shown in the lower right panel
of Fig. 4) very similar to that for the Gaussian pulse shown
in the lower right panel of Figure 2.

Due to the rather structureless behavior of the distri-
bution function for the bifrequent fields of Gauss or super-
Gauss type, the density (10) is easily accessible. Instead
of n we show in the following the dimensionless combi-
nation Ne−e+ = n/ω3 which characterizes the number of
pairs generated in a volume determined by the transverse
size of the minimum focal spot attainable at the diffrac-
tion limit of field “1”.

Figure 5 shows the increase of the number of pairs
created with increasing field strength kEE of the high-
frequency pulse from small to large values of kE . The left
panel shows also a strong dependence of the effect on the
frequency kωω of the second component of the field: at
kω = 10 the amplification effect becomes noticeable only
for kE > 0.01. For kω = 40, an enhancement effect is
seen already for kE > 0.0001. Such a behavior has been
noted already in reference [24] for another special field
model and in reference [20] more generally: keeping fixed
all other parameters, a certain value of the field strength
“2” is required to cause a noticeable amplification by the
assisting field. The right panel of Figure 5 shows that the
effect is universal for different frequencies ω of the strong
field “1”. The effect depends weakly on ω at fixed high-
frequency kωω. In the inset of that panel, we show the
ratio r = Ne−e+(kE)/Ne−e+(0) = n1+2/n1 as a function
of kE to quantify the amplification effect. In particular,
at ke → 1, the enhancement due to the assisting field
becomes enormously large.

The dependence of the amplification effect on the fre-
quency kωω of the weak, high-frequency field component
is presented in Figure 6. In the left panel, the dependence
of the number of created pairs is presented for three val-
ues of the strong-field frequency ω. At the same time, the
frequency range of the second field component runs in
each case over a range from values of the frequency ω, i.e.
kω = 1, up to kωω = 2 m. The limiting case of equality of
the first and the second frequency components is equiva-
lent to an increase of the field amplitude of the first compo-
nent by the coefficient 1 + kE and corresponds to the field

http://www.epj.org
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Fig. 4. Residual phase space distributions at p⊥ = 0 (upper row) and p‖ = 0 (lower row) for the fields displayed in Figure 3. Left
column: the strong, low-frequency component “1” of the pulse (kE = 0); middle column: the weak, high-frequency component
“2” with kE = 0.25 and kω = 10; right column: the superposition “1+2”.

Fig. 5. The number of pairs produced in the pulse of equations (13) and (14) with E0 = 0.2Ec and σ = 5. Left: ω = 0.05 m and
kω = 10 (solid curve) and kω = 40 (dashed curve). Right: ω = 0.05 m (solid curve) and ω = 0.02 m (dotted curve); kωω = 0.5 m
for both curves. The inset shows the ratio r = Ne−e+(kE)/Ne−e+(0) = n1+2/n1.

Fig. 6. Effectiveness of increasing the number of pairs produced for pulse type given by equations (13) and (14) with E0 = 0.2 Ec,
kE = 0.25 and σ = 5. The number of pairs Ne−e+ (left) and the ratio r (right) as a function of the weak-field frequency kωω
for ω = 0.01 m (solid curve), 0.02 m (dashed curve) and 0.05 m (dotted curve).

http://www.epj.org
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Fig. 7. The phase distribution for the pulse (15) with a Gaussian envelope with E0 = 0.2 Ec and σ = 50. Left: kE = 0; middle:
only for the second term in (15) with kE = 0.25, kωω = m; right: kE = 0.25, kωω = m.

defined by equations (11) and (12) with E0 → E0(1+kE).
The right panel of Figure 6 shows the dependence of the
ratio r of the enhancement of pair creation by the second
field component. For all three pulse frequencies ω the ratio
shows these unique features:

(i) at kω = 1 the enhancement stems from a coherent
superposition of the high and the low field which is
quantitatively described by a simple rescaling of the
field strength E0 → E0(1 + kE) in the law of pair
production by the single high field;

(ii) for high values of the low-field frequency kωω >∼ 0.5 m
the results are almost identical and only weakly de-
pending on the high-field frequency ω, they are dom-
inated by the multiphoton regime for the assisting
weak field;

(iii) in between these two cases a dip in the ratio occurs
due to the transition from coherent to incoherent su-
perposition of the two fields.

It should be stressed that the pair production in the
multi-photon regime becomes very efficient at high fre-
quencies and depends less on the field strength than in
the tunneling regime. To illustrate that point let us con-
sider the pulse model (15) with a Gaussian envelope and
E0 = 0.2 Ec and ω2 = m. For kE = 0, i.e. only the
first term in (15), the phase space distribution is smooth
(see the left panel of Fig. 7), in contrast to the distribu-
tion shown in the left panel of Figure 2. For larger values
of σ, the distribution approaches that of the Schwinger
process, which is flat in p‖ direction and Gaussian shaped
in p⊥ direction. In the displayed momentum range, one
pronounced multi-photon peak is visible when consider-
ing the second term in (15) alone, see the middle panel
of Figure 7; it is accompanied by much lower side-ridges
in p⊥ direction (the cross section at p⊥ = 0 looks similar
to the middle panel of Figure 2, of course). Its peak value
is much higher than the maximum seen in the left panel,
even the field strength is less. That is the efficiency of
the multi-photon process. The complete pulse (15) gives
rise to the phase distribution exhibited in the right panel.
The enhancement relative to the left panel is obvious, but
the net effect falls short in comparison to the middle panel,
when comparing the maxima of f . In this example the ac-
tion of field “2” looks more like a “lifting” of the distribu-
tion emerging from “1”, albeit without the ripples. While
the ratio r = n1+2/n1 rises strongly for kωω → m (as seen

in the right panels of Figs. 5 and 6 for another pulse), the
net efficiency n1+2/(n1 + n2) acquires a maximum which
can be much larger than unity, but drops ultimately to
unity upon enlarging further kωω as emphasized in refer-
ence [21]. It is the distinct phase space distribution which
becomes important to discriminate the impact of the field
components.

5 Discussion

Our investigation was originally motivated by the avail-
ability of XFELs (EXFEL ∼ 10−5Ec, ωXFEL ∼ 5–50 keV,
cf. fig. 1 in [33] and [24]) and PW laser systems (EPW ∼
10−3Ec, ωPW ∼ 1–3 eV, cf. [34–36]). These installations,
when being combined with each other (as envisaged in
the HIBEF project [37] for instance, or available already
at LCLS [38]), in principle, would be characterized by
kω > 103 and kE ∼ 10−2. Moreover, pulse lengths of
sub-attosecond duration would correspond to mτ ∼ 102.
Clearly, these values are fairly distinct from those we have
considered above. Thus, our present considerations do not
directly apply to situations which can be expected to be
exploited for experimental investigations towards the as-
sisted dynamical Schwinger effect. In so far, our work is
an exploratory supplement to studies searching for promis-
ing designs with discovery potential w.r.t. genuinely non-
perturbative mechanisms of particle production. Without
strikingly new ideas on avenues to the experimental veri-
fication of the Schwinger effect in freely propagating fields
(in contrast to the nuclear Coulomb field), the many de-
tails understood by now call for significantly higher fields
and/or large photon frequencies. Nevertheless, the facets
of the Schwinger effect remain challenging, in particular
due to their relation to many other fields as quoted in the
Introduction.

6 Summary

When two pulses with different frequencies and different
field strengths (the latter ones being high enough, not less
than about an order of magnitude below Ec) one can talk
about two mechanisms for the increase of the pair produc-
tion. If the frequencies of the two components are close
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(in the extreme case, we even can assume they are the
same) and are small compared to the energy required for
multi-photon pair creation, the nature of the increment
of residual pairs is directly related to the highly nonlin-
ear dependence of the effect on the field strength in the
vicinity of Ec. Alternatively, when one of the frequencies
is not high and the second one is approaching the thresh-
old of pair production by single photons we can talk about
changing the properties of the vacuum for the high-energy
photons. In this case, we can expect to more effectively
promote the process of pair production and consider this
process as pair production by a short-wavelength compo-
nent catalyzing the low-frequency component.

In the present study we demonstrate that the increase
of the rate of e−e+ production by combining a strong low-
frequency field and a weak high-frequency field is a uni-
versal phenomenon and manifests itself in a certain range
of parameters of the high-frequency field. Our results have
been obtained within a non-perturbative framework. The
shape of the electric field pulse is realistic and reproduces
to some extent the characteristics of field pulses in ex-
perimental setups. The presented approach allows on the
one hand to optimize the parameters for practical im-
plementations of the dynamical Schwinger effect. On the
other hand, by choosing parameters of the field model
that characterise the actual experiment it allows to ac-
curately estimate the number of residual pairs and their
characteristics.
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supported by Narodowe Centrum Nauki under grant number
UMO-2014/15/B/ST2/03752.
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