77 research outputs found

    Antiseptic Methods in the Treatment of Enteric Fever

    Get PDF

    A study of minimum bar spacing for bond in thin-shell precast concrete

    Get PDF
    This thesis document was issued under the authority of another institution, not NPS. At the time it was written, a copy was added to the NPS Library collection for reasons not now known.  It has been included in the digital archive for its historical value to NPS.  Not believed to be a CIVINS (Civilian Institutions) title.The purpose of the tests was to determine the minimum bar spacing and clear cover required to develop bond in thin-shell, precast concrete. The tests were of the pull-out type in which round bars of two sizes were cast in a horizontal position; clear spacing and cover (always equal) and the length of embedment were varied. The slips of the bars were measured at the loaded and free ends.http://www.archive.org/details/studyofminimumba00col

    Germline EPHB2 Receptor Variants in Familial Colorectal Cancer

    Get PDF
    Familial clustering of colorectal cancer occurs in 15–20% of cases, however recognized cancer syndromes explain only a small fraction of this disease. Thus, the genetic basis for the majority of hereditary colorectal cancer remains unknown. EPHB2 has recently been implicated as a candidate tumor suppressor gene in colorectal cancer. The aim of this study was to evaluate the contribution of EPHB2 to hereditary colorectal cancer. We screened for germline EPHB2 sequence variants in 116 population-based familial colorectal cancer cases by DNA sequencing. We then estimated the population frequencies and characterized the biological activities of the EPHB2 variants identified. Three novel nonsynonymous missense alterations were detected. Two of these variants (A438T and G787R) result in significant residue changes, while the third leads to a conservative substitution in the carboxy-terminal SAM domain (V945I). The former two variants were found once in the 116 cases, while the V945I variant was present in 2 cases. Genotyping of additional patients with colorectal cancer and control subjects revealed that A438T and G787R represent rare EPHB2 alleles. In vitro functional studies show that the G787R substitution, located in the kinase domain, causes impaired receptor kinase activity and is therefore pathogenic, whereas the A438T variant retains its receptor function and likely represents a neutral polymorphism. Tumor tissue from the G787R variant case manifested loss of heterozygosity, with loss of the wild-type allele, supporting a tumor suppressor role for EPHB2 in rare colorectal cancer cases. Rare germline EPHB2 variants may contribute to a small fraction of hereditary colorectal cancer

    Biomarkers of angiogenesis and their role in the development of VEGF inhibitors

    Get PDF
    Vascular endothelial growth factor (VEGF) has been confirmed as an important therapeutic target in randomised clinical trials in multiple disease settings. However, the extent to which individual patients benefit from VEGF inhibitors is unclear. If we are to optimise the use of these drugs or develop combination regimens that build on this efficacy, it is critical to identify those patients who are likely to benefit, particularly as these agents can be toxic and are expensive. To this end, biomarkers have been evaluated in tissue, in circulation and by imaging. Consistent drug-induced increases in plasma VEGF-A and blood pressure, as well as reductions in soluble VEGF-R2 and dynamic contrast-enhanced MRI parameters have been reported. In some clinical trials, biomarker changes were statistically significant and associated with clinical end points, but there is considerable heterogeneity between studies that are to some extent attributable to methodological issues. On the basis of observations with these biomarkers, it is now appropriate to conduct detailed prospective studies to define a suite of predictive, pharmacodynamic and surrogate response biomarkers that identify those patients most likely to benefit from and monitor their response to this novel class of drugs

    Targeted therapies in colorectal cancer: an integrative view by PPPM

    Get PDF
    In developed countries, colorectal cancer (CRC) is the third most common malignancy, but it is the second most frequent cause of cancer-related death. Clinicians are still faced with numerous challenges in the treatment of this disease, and future approaches which target the molecular features of the disorder will be critical for success in this disease setting. Genetic analyses of many solid tumours have shown that up to 100 protein-encoding genes are mutated. Within CRC, numerous genetic alterations have been identified in a number of pathways. Therefore, understanding the molecular pathology of CRC may present information on potential routes for treatment and may also provide valuable prognostic information. This will be particularly pertinent for molecularly targeted treatments, such as anti-vascular endothelial growth factor therapies and anti-epidermal growth factor receptor (EGFR) monoclonal antibody therapy. KRAS and BRAF mutations have been shown to predict response to anti-EGFR therapy. As EGFR can also signal via the phosphatidylinositol 3-kinase (PI3K) kinase pathway, there is considerable interest in the potential roles of members of this pathway (such as PI3K and PTEN) in predicting treatment response. Therefore, a combined approach of new techniques that allow identification of these biomarkers alongside interdisciplinary approaches to the treatment of advanced CRC will aid in the treatment decision-making process and may also serve to guide future therapeutic approaches

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore