2 research outputs found

    Potential utility of plasma fatty acid analysis in the diagnosis of cystic fibrosis

    No full text
    BACKGROUND: An altered distribution of fatty acids in cells and tissues is found in patients with cystic fibrosis (CF). In this study, we assessed the potential role of plasma fatty acid analysis in the diagnosis of CF. METHODS: In this 2-part study, we first used gas chromatography-mass spectrometry to analyze fatty acids in plasma from 13 CF patients and 11 controls without CF. We then used the fatty acid distribution data to identify the fatty acids or multiple fatty acid calculations most effective in identifying CF patients. Part 2 of the study was a blinded analysis of 10 CF patients and 9 controls to directly test the effectiveness of the diagnostic parameters for CF identified from the plasma fatty acid analysis. RESULTS: In the nonblinded trial, the multiplication product of (18:2 n-6) x (22:6 n-3) (each as percentage of total plasma fatty acid) was the most effective indicator for distinguishing patients with CF from controls (P = 0.0003). In part 2 (the blinded trial), this multiplication product was also the most effective indicator for distinguishing CF patients from controls (P = 0.0008). CONCLUSIONS: The product of (18:2 n-6) x (22:6 n-3) is effective for distinguishing CF patients from persons without CF. This diagnostic marker may have value as an alternative to the sweat chloride test in selected patients being evaluated for CF

    Cell culture models demonstrate that CFTR dysfunction leads to defective fatty acid composition and metabolism*

    No full text
    Cystic fibrosis (CF) is associated with fatty acid alterations characterized by low linoleic and docosahexaenoic acid. It is not clear whether these fatty acid alterations are directly linked to cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction or result from nutrient malabsorption. We hypothesized that if fatty acid alterations are a result of CFTR dysfunction, those alterations should be demonstrable in CF cell culture models. Two CF airway epithelial cell lines were used: 16HBE, sense and antisense CFTR cells, and C38/IB3-1 cells. Wild-type (WT) and CF cells were cultured in 10% fetal bovine serum (FBS) or 10% horse serum. Fatty acid levels were analyzed by GC-MS. Culture of both WT and CF cells in FBS resulted in very low linoleic acid levels. When cells were cultured in horse serum containing concentrations of linoleic acid matching those found in human plasma, physiological levels of linoleic acid were obtained and fatty acid alterations characteristic of CF tissues were then evident in CF compared with WT cells. Kinetic studies with radiolabeled linoleic acid demonstrated in CF cells increased conversion to longer and more-desaturated fatty acids such as arachidonic acid. In conclusion, these data demonstrate that CFTR dysfunction is associated with altered fatty acid metabolism in cultured airway epithelial cells
    corecore