52 research outputs found

    Entanglement entropy between real and virtual particles in ϕ4\phi ^{4} quantum field theory

    Get PDF
    The aim of this work is to compute the entanglement entropy of real and virtual particles by rewriting the generating functional of ϕ4\phi ^{4} theory as a mean value between states and observables defined through the correlation functions. Then the von Neumann definition of entropy can be applied to these quantum states and in particular, for the partial traces taken over the internal or external degrees of freedom. This procedure can be done for each order in the perturbation expansion showing that the entanglement entropy for real and virtual particles behaves as ln(m0)\ln (m_{0}). In particular, entanglement entropy is computed at first order for the correlation function of two external points showing that mutual information is identical to the external entropy and that conditional entropies are negative for all the domain of m0m_{0}. In turn, from the definition of the quantum states, it is possible to obtain general relations between total traces between different quantum states of a r theory. Finally, discussion about the possibility of taking partial traces over external degrees of freedom is considered, which implies the introduction of some observables that measure space-time points where interaction occurs.Comment: 4 figure

    Entanglement harvesting in double-layer graphene by vacuum fluctuations in a microcavity

    Get PDF
    The aim of this work is to study the entanglement harvesting between two graphene layers inside a planar microcavity. Applying time-dependent perturbation theory it is shown that nonclassical correlations between electrons in different layers are obtained through the exchange of virtual photons. Considering different initial states of the electrons and the vacuum state of the electromagnetic field, the negativity measure that quantifies the entanglement is computed through the photon propagator for time scales smaller than the light-crossing time of the double layer. The results are compared with those obtained for hydrogenic probes and pointlike Unruh-DeWitt detectors, showing that for different initial states, entangled X states and more general entangled reduced matrices are obtained, which enlarge the classification of bipartite quantum states.Fil: Ardenghi, Juan Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentin

    Effective interactions in twisted double-layer graphene in a microcavity

    Get PDF
    In this work a derivation of the effective interactions between two rotated graphene layers inside a microcavity is obtained. Assuming an electromagnetic wave clockwise-polarized, propagating along the z-axis and applying the Schrieffer-Wolff transformation, an explicit interaction between electrons in different graphene layers is obtained, where the interaction strength depends on the distance between layers, the cavity photon frequency and the rotation angle of the layers. Projecting over the low-energy sector, an effective Hamiltonian for each graphene layer introduces a resonance in the Fermi velocities and modify the dispersion relation near the Dirac point by introducing a bandgap. In the subspace of the double-layer graphene, the effective interaction is suitable to develop two-qubit devices with appropriate gate voltages.Fil: Ardenghi, Juan Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentin

    Statistical repulsion/attraction of electrons in graphene in a magnetic field

    Get PDF
    The aim of this work is to describe the thermodynamic properties of an electron gas in graphene placed in a constant magnetic field. The electron gas is constituted by NN Bloch electrons in the long wavelength approximation. The partition function is analyzed in terms of a perturbation expansion of the dimensionless constant (eBL)1(\sqrt{eB}L)^{-1}. The statistical repulsion/attraction potential for electrons in graphene is obtained in the respective case in which antisymmetric/symmetric states in the coordinates are chosen. Thermodynamic functions are computed for different orders in the perturbation expansion and the different contributions are compared for symmetric and antisymmetric states, showing remarkable differences between them due to the spin exchange correlation. A detailed analysis of the statistical potential is done, showing that, although electrons satisfy Fermi statistics, attractive potential at some interparticle distances can be found.Comment: Physica B, 201

    Valley properties of doped graphene in a magnetic field

    Get PDF
    The aim of this work is to describe the electronic properties of graphene in a constant magnetic field in the long wavelength approximation with random binary disorder, by solving the Soven equation self-consistently. Density of state contributions for different valleys in each sublattice sites are obtained for different values of magnetic field strength showing remarkable differences between K and K' valleys. A band gap is obtained by an asymmetric on-site impurity concentration and the graphene electrons acquire an anomalous magnetic moment, which is opposite in different valleys, which depend highly in the interplay between the impurity band, the band edges and the broadening of the Landau levels. In turn, magnetization as a function of B for different on-site random impurities is computed showing that by decreasing the on-site impurity energy values, maximum magnetization is shifted towards higher values of B which can be used to create and manipulate polarized valley currents. Finally, conductivity and local vertex function are obtained as a function of energy showing that scattering contributions from A and B sublattices differ significantly. Effective medium local two-irreducible vertex is computed showing that scattering from sublattices A and B do not contribute equally, which can be related to weak anti-localization. From these results, it could be possible to explore how the valley pseudospin can be used to create polarized currents by populating asymmetrically the sublattice sites, where the population can be tuned with the applied magnetic field strength

    Dynamical diffusion and renormalization group equation for the Fermi velocity in doped graphene

    Get PDF
    The aim of this work is to study the electron transport in graphene with impurities by introducing a generalization of linear response theory for linear dispersion relations and spinor wave functions. Current response and density response functions are derived and computed in the Boltzmann limit, showing that in the former case, a minimum conductivity appears in the no-disorder limit. In turn, from the generalization of both functions, an exact relation can be obtained that relates both. Combining this result with the relation given by the continuity equation, it is possible to obtain general functional behavior of the diffusion pole. Finally, a dynamical diffusion is computed in the quasistatic limit using the definition of relaxation function. A lower cutoff must be introduced to regularize infrared divergences, which allow us to obtain a full renormalization group equation for the Fermi velocity, which is solved up to order O(h^2).Comment: 20 pages, 2 figure

    Ballistic transport properties in pristine-doped-pristine graphene junctions

    Get PDF
    We investigate the ballistic electron transport in a monolayer graphene with configurational averaged impurities, located between two clean graphene leads. It is shown that the electron transmission are strongly dependent on the concentration of impurities and the incident energy. In turn, the conductance computed using the Landauer formalism shows a similar behavior to those found in experimental works as a function of the applied voltage for different concentrations of impurities in the limit of low temperatures. In the limit of zero bias voltage, the conductance shows a minimum value which reduces to zero for high concentration of impurities which disentangle graphene sublattices. These results can be very helpful for exploring the tunneling mechanism of electrons through doped thermodynamically stable graphene

    Temperature effect on the magnetic oscillations in 2D materials

    Get PDF
    We study the magnetic oscillations (MO) in 2D materials with a buckled honeycomb lattice, considering a perpendicular electric and magnetic field. At zero temperature the MO consist of the sum of four sawtooth oscillations, with two unique frequencies and phases. The values of these frequencies depend on the Fermi energy and electric field, which in turn determine the condition for a beating phenomenon in the MO. We analyse the temperature effect in the MO by considering its local corrections over each magnetization peak, given by Fermi–Dirac like functions. We show that the width of these functions is related to the minimum temperature necessary to observe the spin and valley properties in the MO. In particular, we find that in order to observe the spin splitting, the width must be lower than the MO phase difference. Likewise, in order to observe valley mixing effects, the width must be lower than the MO period. We also show that at high temperatures, all the maxima and minima in the MO shift to a constant value, in which case we obtain a simple expression for the MO and its envelope. The results obtained show unique features in the MO in 2D materials, given by the interplay between the valley and spin.Fil: Escudero, Federico Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaFil: Ardenghi, Juan Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaFil: Jasen, Paula Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentin

    A general formulation for the magnetic oscillations in two dimensional systems

    Get PDF
    We develop a general formalism for the magnetic oscillations (MO) in two dimensional (2D) systems. We consider general 2D Landau levels, which may depend on other variable or indices, besides the perpendicular magnetic field. In the ground state, we obtain expressions for the MO phase and amplitude. From this we use a Fourier expansion to write the MO, with the first term being a sawtooth oscillation. We also consider the effects of finite temperature, impurities or lattice imperfections, assuming a general broadening of the Landau levels. We develop two methods for describing these damping effects in the MO. One in terms of the occupancy of the Landau levels, the other in terms of reduction factors, which results in a generalization of the Lifshits-Kosevich (LK) formula. We show that the first approach is particularly useful at very low damping, when only the states close to the Fermi energy are excited. In contrast, the LK formula may be more convenient at higher damping, when only few terms are needed in its harmonic expansion. We compare different damping situations, showing how the MO are broadened in each case. The general formulation presented allows to relate the properties of the MO with those of the 2D systems.Fil: Escudero, Federico Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaFil: Ardenghi, Juan Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaFil: Jasen, Paula Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentin

    Heat capacity in doped graphene under magnetic fields: the role of spin splitting

    Get PDF
    We study the electronic heat capacity in doped graphene under magnetic fields. The partition function is calculated considering only the thermal excitations in the last occupied energy levels. Due to the large energy separation between the Landau levels (LLs) and the Zeeman splitting, at low temperatures the heat capacity is dominated by the spin excitations in the last occupied LL. Correspondingly the heat capacity oscillates with maximum amplitude at half filling of each LL. At higher temperatures the inter-LLs excitations dominate the heat capacity, with maximum amplitude at full filling factors. The oscillation amplitudes are compared with the phonon heat capacity C p. It is shown that the spin induced heat capacity oscillations have a maximum amplitude approaching 3% of C p, whereas for the inter-LLs excitations the maximum amplitude is only 0.1% of C p. These amplitudes decrease in the presence of impurities, although the effect is appreciable if the LLs broadening is bigger than the excitation energies.Fil: Escudero, Federico Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaFil: Ardenghi, Juan Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaFil: Jasen, Paula Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentin
    corecore