22 research outputs found

    Molecular Epidemiology of Multidrug-Resistant Uropathogenic Escherichia coli O25b Strains Associated with Complicated Urinary Tract Infection in Children.

    Get PDF
    BACKGROUND: Uropathogenic Escherichia coli (UPEC) has increased the incidence of urinary tract infection (UTI). It is the cause of more than 80% of community-acquired cystitis cases and more than 70% of uncomplicated acute pyelonephritis cases. AIM: The present study describes the molecular epidemiology of UPEC O25b clinical strains based on their resistance profiles, virulence genes, and genetic diversity. METHODS: Resistance profiles were identified using the Kirby-Bauer method, including the phenotypic production of extended-spectrum ÎČ-lactamases (ESBLs) and metallo-ÎČ-lactamases (MBLs). The UPEC serogroups, phylogenetic groups, virulence genes, and integrons were determined via multiplex PCR. Genetic diversity was established using pulsed-field gel electrophoresis (PFGE), and sequence type (ST) was determined via multilocus sequence typing (MLST). RESULTS: UPEC strains (n = 126) from hospitalized children with complicated UTIs (cUTIs) were identified as O25b, of which 41.27% were multidrug resistant (MDR) and 15.87% were extensively drug resistant (XDR). The O25b strains harbored the fimH (95.23%), csgA (91.26%), papGII (80.95%), chuA (95.23%), iutD (88.09%), satA (84.92%), and intl1 (47.61%) genes. Moreover, 64.28% were producers of ESBLs and had high genetic diversity. ST131 (63.63%) was associated primarily with phylogenetic group B2, and ST69 (100%) was associated primarily with phylogenetic group D. CONCLUSION: UPEC O25b/ST131 harbors a wide genetic diversity of virulence and resistance genes, which contribute to cUTIs in pediatrics

    Crystal structure of ovocleidin-17, a major protein of the calcified Gallus gallus eggshell: implications in the calcite mineral growth pattern

    No full text
    6 p.-6 fig.-1 tab.Ovocleidin-17 (OC17) from Gallus gallus is one of the best candidates to control and regulate the deposition of calcium carbonate in the calcified eggshell layer. Here, the crystal structure of monomeric OC17, determined at a resolution of 1.5 A, was refined to a crystallographic R-factor of 20.1%. This is the first protein directly involved in a non-pathological biomineralization process resolved by x-ray diffraction to date. The protein has a mixed alpha/beta structure containing a single C-type lectin-like domain. However, although OC17 shares the conserved scaffold of the C-type lectins, it does not bind carbohydrates. Nevertheless, in vitro OC17 modifies the crystalline habit of calcium carbonate (CaCO3) and the pattern of crystal growth at intervals of 5-200 microg/ml. Determining the three-dimensional structure of OC17 contributes to a better understanding of the biological behavior of structurally related biomolecules and of the mechanisms involved in eggshell and other mineralization processes.This work was supported by Grant 36155E from Consejo Nacional de Ciencia y Tecnología (CONACyT) Mexico and the Dirección General de Asuntos del Personal Académico-Universidad Autónoma de México (DGAPA-UNAM) (Mexico) project IN204702 and BIO01-1290 from the Ministerio de Ciencia y Tecnología (Spain).Peer reviewe

    Purification, crystallization and preliminary X-ray analysis of struthiocalcin 1 from ostrich (Struthio camelus) eggshell

    No full text
    The purification, crystallization and preliminary X-ray diffraction data of the protein struthiocalcin 1 isolated from ostrich eggshell are reported

    Early Transcriptomic Response to LDL and oxLDL in Human Vascular Smooth Muscle Cells.

    No full text
    Although nowadays it is well known that the human transcriptome can importantly vary according to external or environmental condition, the reflection of this concept when studying oxidative stress and its direct relationship with gene expression profiling during the process of atherogenesis has not been thoroughly achieved.The ability to analyze genome-wide gene expression through transcriptomics has shown that the genome responds dynamically to diverse stimuli. Here, we describe the transcriptome of human vascular smooth muscle cells (hVSMC) stimulated by native and oxidized low-density lipoprotein (nLDL and oxLDL respectively), with the aim of assessing the early molecular changes that induce a response in this cell type resulting in a transcriptomic transformation. This expression has been demonstrated in atherosclerotic plaques in vivo and in vitro, particularly in the light of the oxidative modification hypothesis of atherosclerosis.Total RNA was isolated with TRIzol reagent (Life Technologies) and quality estimated using an Agilent 2100 bioanalyzer. The transcriptome of hVSMC under different experimental conditions (1,5 and 24 hours for nLDL and oxLDL) was obtained using the GeneChip Human Gene 1.0 ST (Affymetrix) designed to measure gene expression of 28,869 well-annotated genes. A fixed fold-change cut-off corresponding to ± 2 was used to identify genes exhibiting the most significant variation and statistical significance (P< 0.05), and 8 genes validated by qPCR using Taqman probes.10 molecular processes were significantly affected in hVSMC: Apoptosis and cell cycle, extracellular matrix remodeling, DNA repair, cholesterol efflux, cGMP biosynthesis, endocytic mechanisms, calcium homeostasis, redox balance, membrane trafficking and finally, the immune response to inflammation. The evidence we present supporting the hypothesis for the involvement of oxidative modification of several processes and metabolic pathways in atherosclerosis is strengthen by the fact that gene expression patterns obtained when hVSMC are incubated for a long period of time in the presence of nLDL, correspond very much the same as when cells are incubated for a short period of time in the presence of chemically modified oxLDL. Our results indicate that under physiological conditions and directly related to specific environmental conditions, LDL particles most probably suffer chemical modifications that initially serve as an alert signal to overcome a harmful stimulus that with time might get transformed to a pathological pattern and therefore consolidate a pathological condition

    Dimeric and trimeric fusion proteins generated with fimbrial adhesins of uropathogenic Escherichia coli

    Get PDF
    Urinary tract infections (UTIs) are associated with high rates of morbidity and mortality worldwide, and uropathogenic Escherichia coli (UPEC) is the main etiologic agent. Fimbriae assembled on the bacterial surface are essential for adhesion in the urinary tract epithelium. In this study, the FimH, CsgA, and PapG adhesins were fused to generate biomolecules as potential target vaccines against UTIs. The fusion protein design was generated using bioinformatics tools, and template fusion gene sequences were synthesized by GenScript in the following order fimH-csgA-papG-fimH-csgA (fcpfc) linked to the nucleotide sequence encoding the EAAAK5 peptide. Monomeric (fimH, csgA, and papG), dimeric (fimH-csgA), and trimeric (fimH-csgA-papG) genes were cloned into the pLATE31 expression vector and generated products of 1040, 539, 1139, 1442, and 2444 bp, respectively. Fusion protein expression in BL21 E. coli was induced with 1 mM IPTG, and His-tagged fusion proteins were purified under denaturing conditions and refolded by dialysis using C-buffer. Coomassie blue-stained SDS-PAGE gels and Western blot analysis revealed bands of 29.5, 11.9, 33.9, 44.9, and 82.1 kDa corresponding to FimH, CsgA, PapG, FC, and FCP proteins, respectively. Mass spectrometry analysis by MALDI-TOF/TOF revealed specific peptides that confirmed the fusion protein structures. Dynamic light scattering analysis revealed the polydispersed state of the fusion proteins. The FimH, CsgA, and PapG stimulated the release of 372 to 398 pg/mL IL-6; interestingly, the FC and FCP stimulated the release of 464.79 pg/mL (p ≀ 0.018) and 521.24 pg/mL (p ≀ 0.002) IL-6, respectively. In addition, the FC and FCP stimulated the release of 398.52 pg/mL (p ≀ 0.001) and 450.40 pg/mL (p ≀ 0.002) IL-8, respectively. High levels of IgA and IgG antibodies in human sera reacted against the fusion proteins, and under identical conditions, low levels of IgA and IgG antibodies were detected in human urine. Rabbit polyclonal antibodies generated against FimH, CsgA, PapG, FC, and FCP blocked the adhesion of the CFT073 E. coli strain to HTB5 bladder cells. In conclusion, the FC and FCP proteins were highly stable, demonstrated antigenic properties, and induced cytokine release (IL-6 and IL-8); furthermore, antibodies generated against these proteins showed protection against bacterial adhesion

    Molecular Epidemiology of Multidrug-Resistant Uropathogenic Escherichia coli O25b Strains Associated with Complicated Urinary Tract Infection in Children

    No full text
    Background: Uropathogenic Escherichia coli (UPEC) has increased the incidence of urinary tract infection (UTI). It is the cause of more than 80% of community-acquired cystitis cases and more than 70% of uncomplicated acute pyelonephritis cases. Aim: The present study describes the molecular epidemiology of UPEC O25b clinical strains based on their resistance profiles, virulence genes, and genetic diversity. Methods: Resistance profiles were identified using the Kirby–Bauer method, including the phenotypic production of extended-spectrum ÎČ-lactamases (ESBLs) and metallo-ÎČ-lactamases (MBLs). The UPEC serogroups, phylogenetic groups, virulence genes, and integrons were determined via multiplex PCR. Genetic diversity was established using pulsed-field gel electrophoresis (PFGE), and sequence type (ST) was determined via multilocus sequence typing (MLST). Results: UPEC strains (n = 126) from hospitalized children with complicated UTIs (cUTIs) were identified as O25b, of which 41.27% were multidrug resistant (MDR) and 15.87% were extensively drug resistant (XDR). The O25b strains harbored the fimH (95.23%), csgA (91.26%), papGII (80.95%), chuA (95.23%), iutD (88.09%), satA (84.92%), and intl1 (47.61%) genes. Moreover, 64.28% were producers of ESBLs and had high genetic diversity. ST131 (63.63%) was associated primarily with phylogenetic group B2, and ST69 (100%) was associated primarily with phylogenetic group D. Conclusion: UPEC O25b/ST131 harbors a wide genetic diversity of virulence and resistance genes, which contribute to cUTIs in pediatrics

    Conversion of M1 Macrophages to Foam Cells: Transcriptome Differences Determined by Sex

    No full text
    Background: M1 macrophages involved in pro-inflammatory processes can be induced by low-density lipoproteins (LDL), giving rise to foam cells. In the atheroma plaque, it has been identified that males present more advanced lesions associated with infiltration. Therefore, our study aims to investigate sex-related changes in the transcriptome of M1 macrophages during the internalization process of LDL particles. Methods: Peripheral blood mononuclear cells (PBMCs) from healthy male and female subjects were separated using Hystopaque, and monocytes were isolated from PBMCs using a positive selection of CD14+ cells. Cells were stimulated with LDL 10 &micro;g/mL, and the transcriptional profile of M1 macrophages performed during LDL internalization was determined using a Clariom D platform array. Results: Chromosome Y influences the immune system and inflammatory responses in males expressing 43% of transcripts in response to LDL treatment. Males and females share 15 transcripts, where most correspond to non-coding elements involved in oxidative stress and endothelial damage. Conclusions: During LDL internalization, male monocyte-derived M1 macrophages display more marked proinflammatory gene expression. In contrast, female M1 macrophages display a more significant number of markers associated with cell damage

    Conversion of M1 Macrophages to Foam Cells: Transcriptome Differences Determined by Sex

    No full text
    Background: M1 macrophages involved in pro-inflammatory processes can be induced by low-density lipoproteins (LDL), giving rise to foam cells. In the atheroma plaque, it has been identified that males present more advanced lesions associated with infiltration. Therefore, our study aims to investigate sex-related changes in the transcriptome of M1 macrophages during the internalization process of LDL particles. Methods: Peripheral blood mononuclear cells (PBMCs) from healthy male and female subjects were separated using Hystopaque, and monocytes were isolated from PBMCs using a positive selection of CD14+ cells. Cells were stimulated with LDL 10 ”g/mL, and the transcriptional profile of M1 macrophages performed during LDL internalization was determined using a Clariom D platform array. Results: Chromosome Y influences the immune system and inflammatory responses in males expressing 43% of transcripts in response to LDL treatment. Males and females share 15 transcripts, where most correspond to non-coding elements involved in oxidative stress and endothelial damage. Conclusions: During LDL internalization, male monocyte-derived M1 macrophages display more marked proinflammatory gene expression. In contrast, female M1 macrophages display a more significant number of markers associated with cell damage

    Analytical Performances of the COVISTIXTM Antigen Rapid Test for SARS-CoV-2 Detection in an Unselected Population (All-Comers)

    No full text
    The performance and validity of the COVISTIXTM rapid antigen test for the detection of SARS-CoV-2 were evaluated in an unselected population. Additionally, we assessed the influence of the Omicron SARS-CoV-2 variant in the performance of this antigen rapid test. Swab samples were collected at two point-of-care facilities in Mexico City from individuals that were probable COVID-19 cases, as they were either symptomatic or asymptomatic persons at risk of infection due to close contact with SARS-CoV-2 positive cases. Detection of the Omicron SARS-CoV-2 variant was performed in 91 positive cases by Illumina sequencing. Specificity and sensitivity of the COVISTIXTM rapid antigen test was 96% (CI 95% 94&ndash;98) and 81% (CI 95% 76&ndash;85), respectively. The accuracy parameters were not affected in samples collected after 7 days of symptom onset, and it was possible to detect almost 65% of samples with a Ct-value between 30 and 34. The COVISTIXTM antigen rapid test is highly sensitive (93%; CI 95% 88&ndash;98) and specific (98%; CI 95% 97&ndash;99) for detecting Omicron SARS-CoV-2 variant carriers. The COVISTIXTM rapid antigen test is adequate for examining asymptomatic and symptomatic individuals, including those who have passed the peak of viral shedding, as well as carriers of the highly prevalent Omicron SARS-CoV-2 variant

    Expression of long non‐coding RNA ENSG00000226738 (LncKLHDC7B) is enriched in the immunomodulatory triple‐negative breast cancer subtype and its alteration promotes cell migration, invasion, and resistance to cell death

    No full text
    Triple negative breast cancer (TNBC) represents an aggressive phenotype with poor prognosis compared with ER, PR, and HER2‐positive tumors. TNBC is a heterogeneous disease, and gene expression analysis has identified seven molecular subtypes. Accumulating evidence demonstrates that long non‐coding RNA (lncRNA) are involved in regulation of gene expression and cancer biology, contributing to essential cancer cell functions. In this study, we analyzed the expression profile of lncRNA in TNBC subtypes from 156 TNBC samples, and then characterized the functional role of LncKLHDC7B (ENSG00000226738). A total of 710 lncRNA were found to be differentially expressed between TNBC subtypes, and a subset of these altered lncRNA were independently validated. We discovered that LncKLHDC7B (ENSG00000226738) acts as a transcriptional modulator of its neighboring coding gene KLHDC7B in the immunomodulatory subtype. Furthermore, LncKLHDC7B knockdown enhanced migration and invasion, and promoted resistance to cellular death. Our findings confirmed the contribution of LncKLHDC7B to induction of apoptosis and inhibition of cell migration and invasion, suggesting that TNBC tumors with enrichment of LncKLHDC7B may exhibit distinct regulatory activity, or that this may be a generalized process in breast cancer. Additionally, in silico analysis confirmed for the first time that the low expression of KLHDC7B and LncKLHDC7B is associated with poor prognosis in patients with breast cancer
    corecore