4 research outputs found

    T1R2 receptor-mediated glucose sensing in the upper intestine potentiates glucose absorption through activation of local regulatory pathways

    No full text
    Objective: Beyond the taste buds, sweet taste receptors (STRs; T1R2/T1R3) are also expressed on enteroendocrine cells, where they regulate gut peptide secretion but their regulatory function within the intestine is largely unknown. Methods: Using T1R2-knock out (KO) mice we evaluated the role of STRs in the regulation of glucose absorption in vivo and in intact intestinal preparations ex vivo. Results: STR signaling enhances the rate of intestinal glucose absorption specifically in response to the ingestion of a glucose-rich meal. These effects were mediated specifically by the regulation of GLUT2 transporter trafficking to the apical membrane of enterocytes. GLUT2 translocation and glucose transport was dependent and specific to glucagon-like peptide 2 (GLP-2) secretion and subsequent intestinal neuronal activation. Finally, high-sucrose feeding in wild-type mice induced rapid downregulation of STRs in the gut, leading to reduced glucose absorption. Conclusions: Our studies demonstrate that STRs have evolved to modulate glucose absorption via the regulation of its transport and to prevent the development of exacerbated hyperglycemia due to the ingestion of high levels of sugars. Keywords: Glucose homeostasis, Sweet taste receptors, GLP-2, GLUT2, T1R

    Current Water Conditions in Massachusetts (2005-11-10)

    No full text
    PURPOSE: Serum-biomarker based screening for pancreatic cancer could greatly improve survival in appropriately targeted high-risk populations. EXPERIMENTAL DESIGN: Eighty-three circulating proteins were analyzed in sera of patients diagnosed with pancreatic ductal adenocarcinoma (PDAC, n = 333), benign pancreatic conditions (n = 144), and healthy control individuals (n = 227). Samples from each group were split randomly into training and blinded validation sets prior to analysis. A Metropolis algorithm with Monte Carlo simulation (MMC) was used to identify discriminatory biomarker panels in the training set. Identified panels were evaluated in the validation set and in patients diagnosed with colon (n = 33), lung (n = 62), and breast (n = 108) cancers. RESULTS: Several robust profiles of protein alterations were present in sera of PDAC patients compared to the Healthy and Benign groups. In the training set (n = 160 PDAC, 74 Benign, 107 Healthy), the panel of CA 19-9, ICAM-1, and OPG discriminated PDAC patients from Healthy controls with a sensitivity/specificity (SN/SP) of 88/90%, while the panel of CA 19-9, CEA, and TIMP-1 discriminated PDAC patients from Benign subjects with an SN/SP of 76/90%. In an independent validation set (n = 173 PDAC, 70 Benign, 120 Healthy), the panel of CA 19-9, ICAM-1 and OPG demonstrated an SN/SP of 78/94% while the panel of CA19-9, CEA, and TIMP-1 demonstrated an SN/SP of 71/89%. The CA19-9, ICAM-1, OPG panel is selective for PDAC and does not recognize breast (SP = 100%), lung (SP = 97%), or colon (SP = 97%) cancer. CONCLUSIONS: The PDAC-specific biomarker panels identified in this investigation warrant additional clinical validation to determine their role in screening targeted high-risk populations.</p
    corecore